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Functionally Graded Material

2 The dominant and higher-order asymptotic stress and displacement fields surrounding a
stationary crack embedded in a ductile functionally graded material subjected to anti-
plane shear loading are derived. The plastic material gradient is assumed to be in the

radial direction only and elastic effects are neglected. As in the elastic case, the leading
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(most singular) term in the asymptotic expansion is the same in the graded material as in
the homogeneous one with the properties evaluated at the crack tip location. Assuming a
power law for the plastic strains and another power law for the material spatial gradient,
we derive the next term in the asymptotic expansion for the near-tip fields. The second
term in the series may or may not differ from that of the homogeneous case depending on

the particular material property variation. This result is a consequence of the interaction
between the plasticity effects associated with a loading dependent length scale (the plas-
tic zone size) and the inhomogeneity effects, which are also characterized by a separate
length scale (the property gradient variation). [DOL: 10.1115/1.1876434]

1 Introduction

Numerous naturally occurring mechanical systems have prop-
erties that vary continuously and smoothly with position, usually
as a result of natural tailoring of their mechanical response to the
surrounding environment. Examples of such systems are found in
animal and human bone material as well as plant structures such
as wood and cellulose [1]. When specifically tailored for a man-
made engineering application, materials with a continuous spatial
property variation are often termed functionally graded materials
(FGMs). For the purpose of this study, an FGM is a material in
which the mechanical properties are continuous functions of po-
sition. Common forms of FGMs are metal/ceramic systems, which
combine the beneficial properties of a metal (toughness, ductility,
conductivity) with those of a ceramic (hardness, stiffness, heat
resistance). In both naturally occurring and manmade FGMs, the
material gradation can be either in a through-thickness or a radial
fashion. A through-thickness metal/ceramic FGM has potential ap-
plications in areas such as resistance to ballistic penetration and
wear resistance and heat shielding, where the ceramic side would
be brought into contact with the external agent and the metal side
would provide integral structural support. A radial property varia-
tion is commonly generated in many plant and bone structures and
in manmade situations, such as the graded polymeric matrix ma-
terial surrounding a fiber in a polymer matrix fiber reinforced
composite.

Progress in implementing FGM designs has been slower than
initially expected, not only because of the difficulty in manufac-
turing such materials [2], but also because of a lack of a funda-
mental understanding of their mechanical response and, in the
context of the present work, their fracture response. In comparison
with homogenous materials, only a limited number of studies have
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addressed the structure of the near-tip field in graded materials.
Delale and Erdogan [3] solved the mode I problem for a crack
parallel to the direction of material property gradient in an un-
bounded elastic FGM to extract values of the stress intensity fac-
tor. Although several studies of this type exist in the literature,
detailed description of the spatial structure of the near tip stress
field has been limited. A notable contribution is the work of Eis-
chen [4] who studied the asymptotic nature of the stress and dis-
placement fields around a crack tip in a graded material whose
elastic moduli were specified by continuous and generally differ-
entiable functions. Eischen [4] showed that the asymptotic stress
singularity at the crack tip in an FGM is of exactly the same form,
i.e., square root singular and with the same angular variation, as
that present at a crack tip in a homogeneous material [5]. Eischen
also indicated that higher-order terms are influenced by the details
of the material gradient distribution, although in the interest of
generality these terms were not studied in detail there. Recently,
Parameswaran and Shukla [6] computed these higher-order terms
(up to six) for an elastic FGM exhibiting a linear property
gradient.

Parameswaran and Shukla [7] studied the asymptotic nature of
the stress and displacement fields in a dynamically growing crack
in an elastic FGM having either an exponential or linear shear
modulus variation. Much like Eischen [4], they also saw that the
leading term for the case of the FGM is identical to that for the
homogeneous material and only higher-order terms are affected by
the material gradient. In general, it is physically reasonable to
assume that, locally, the material properties of an FGM can be
considered homogeneous. Therefore, it can be expected that the
leading term of the spatial distribution of stresses and displace-
ments for the FGM will always be the same as the homogeneous
case, although the extent of validity of this term may be minimal
and has to be investigated on a case-by-case basis [8].

To our knowledge, apart from the work of Eischen [4] and
Parameswaran and Shukla [6,7], there has not been any investiga-
tion of the detailed spatial structure of deformation fields in the
vicinity of crack tips in FGMs, especially in regards to the precise
nature of the influence of material gradient variation on higher-
order terms. Since FGMs possess an intrinsic length scale associ-
ated with the material gradient, higher-order terms may be af-
fected by this length scale. In addition, all theoretical studies thus
far have dealt with elastic FGMs, despite the fact that the metallic
FGM constituent is ductile. In the metal-rich region of a metal/

JULY 2005, Vol. 72 | 461



ceramic FGM, the local response is effectively that of a graded
plastic material for which an additional length scale corresponding
to the plastic zone size exists.

The goal of the present work is to investigate in detail the
spatial distribution of the displacements and stresses near the tip
of a crack embedded in a plastic (ductile) FGM. Of particular
interest are the development of higher-order terms, their depen-
dence on material gradient and the interaction between the mate-
rial gradient length scale and the plastic zone size. Section 2 of
this paper presents the problem formulation. For mathematical
simplicity, a crack in an unbounded radially varying plastic FGM
under mode 3 loading is considered. Despite the limited applica-
bility of a radial gradient and mode 3 loading, this particular prob-
lem allows us to study the competition between the plasticity and
intrinsic gradient length scales in a tractable way. The leading
term of the near-tip solution is derived in Sec. 3. Section 4 pre-
sents a solution for the second-order term for both the homoge-
neous and graded plastic cases. A comparison of these two solu-
tions allows us to investigate in Sec. 5 the relationship between
the two length scales involved in this problem.

2 Problem Formulation

A semi-infinite, stationary crack embedded in a functionally
graded material subjected to far field mode 3 loading is consid-
ered. Let (r, ) denote a polar coordinate system with its origin
positioned at the crack tip. The sole surviving equilibrium equa-
tion for the mode 3 problem then is

O, +0lr+0r=0, (1)

where o,=0,, and oy=0, are the radial and tangential shear
stress components, respectively, and comma denotes partial differ-
entiation. We assume hereafter that the material response is de-
scribed by the infinitesimal J,-deformation theory of plasticity and
that the elastic contribution to the near-tip strains is negligible
compared to the plastic one. The Ramberg—Osgood power stress—
strain law

n—1
Sy _ §a<ﬂ> Sy @
8() a-() 0-(}

is used, where « is a nondimensional amplification factor, n is the
hardening exponent, &;; are the components of strain, and ¢, is the
strain at the initial yield strength o,. In Eq. (2), o, denotes the von
Mises equivalent stress given by

o, = \%SijSijv (3)

where S;; are the components of the deviatoric stress tensor. In the
above equations, repeated indices imply summation and the indi-
ces i and j range from 1 to 3. Gradation of the material into a
plastic FGM can be achieved by allowing a spatial variation in
any or all of a, n, g,, and o,,.

In the simpler antiplane shear setting, the stress—strain relation
takes the form

e 0,3 [3(0‘3+0‘§)}("W2

Lo T i

g, 0,2 o,

gy 03 |3t +07) (-1)72

et i @

where €,=¢,, and g4=¢gy, are the only nonzero components of the
strain tensor and are related to the out-of-plane displacement w by

1 ow

E=_""5 &g
Equations (4) can be inverted as
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e, )
. G[a 1(n=Dim> 96= G[s 10n=Dn (6)
e. e

o

e . . . »
where g,=V2g;;¢;;/3 is the equivalent strain and the “stiffness
parameter

2 o
- : 1/n (7)
3 (asl))
is a combination of the various material parameters entering the
constitutive relation Eq. (2). In the present work, in order to keep
the problem mathematically tractable, we allow the material prop-
erties to vary radially except for the hardening exponent n which
is taken to be constant. Therefore, the radially varying FGM can
be generated by variations of the material parameters «, €,, and
o,, and can be expressed collectively as a radial variation of the
modulus G defined in Eq. (7), i.e., G=G(r). Using the constitutive
equation (6), the equilibrium relation Eq. (1) can be written in
terms of the strains as

1de 1de, oe de
2 2 0 r 0 2 2 r
ne +eyl——+(1—-n)e,egg| —— +— | +|e. +neyl—
[ne; e]rﬁﬁ ( ) H|:rz90 &r} Le; 6](9}’
& g, | rG’
+ n[s% + s%,]—r +n[sf + sé]—'{—} =0, (8)
r r| G

where G’ =dG/dr. The boundary conditions involve mode 3 sym-
metry ahead of the crack

w(r,0)=0, )
and traction-free conditions along the crack faces

oy(r,m) =0. (10)

3 Leading Asymptotic Term

In this section, we first consider the effect of material property
variation on the leading (most singular) term of the near-tip
asymptotic solution. The asymptotic near-tip fields for a mode 3
crack in a homogeneous ductile material have been derived by
Amazigo [9] using a hodograph transformation technique. We use
here a different approach based on the following assumed sepa-
rable form of the displacement field near the crack tip:

wir6) _

r p+l
A(—) f(0) asr—0, (11)

rp rp
where the power p denotes the strain singularity and must be
greater than —1 to ensure a bounded displacement at the crack tip,
while A is a nondimensional amplification factor. Tn Eq. (11), r,
denotes the load-induced length scale (plastic zone size) and is
used in this study to normalize all length parameters. An expres-
sion for r, based on the leading terms of the elastic and plastic
asymptotic solutions is provided at the end of this section.
Combining Egs. (11), (5), and (8) leads to

rp T G'(rlrp)

¢ =0, (12)

+
! rprp G(rlrg)

where rp denotes the intrinsic material length scale associated
with the material gradient (see Sec. 4.1), and ¢, and ¢, are given
by

by =[np+ D>+ + @+ DIp+n) +(p+ (1 -n)]
X(FPf+(p+n)p+1)7°F,

by =[n(p + 1)°F +n(p + ()], (13)
with f'=df/d6 and f"=d*f/d®. In Eq. (12), the term ¢, would
be present for the homogeneous material, while the term associ-
ated with ¢, is the contribution due to the material property gra-
dient. If no gradient exists, Eq. (12) reduces to ¢;=0 and the
solution for the homogeneous material is recovered [9]. Note that
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the term involving ¢, contains a ratio of the two inherent length
scales involved in this problem, namely the plastic zone size (a
function of external loading and plastic properties) and the mate-
rial property gradient.

Since at this stage we are only interested in the most singular
term of the stress field, it can readily be observed from Eq. (12)
that, as long as G(r) is finite and strictly positive at the origin (as
physically required), the leading order is found by solving ¢;=0,
which is identical to the equation found in the homogenous case.
The leading term for the displacement and stress fields is thus the
same for the plastic FGM material as for the plastic homogeneous
material [9] with the material properties evaluated at the tip
(G(r=0)) and p=—n/(n+1).

The fully plastic asymptotic solution is expected to be valid in
a region very close to the crack tip [10,11]. Under small scale
yielding conditions, the stress state beyond this region decays to
the linearly elastic asymptotic solution. An estimate of the plastic
zone size rp can therefore be obtained by equating the elastic and
plastic leading-order asymptotic approximations for the stresses
under equivalent far-field loading [12]. For simplicity, we com-
pare here the estimates of the equivalent stress o“ along the crack
line (6#=0). The elastic and plastic asymptotic expressions are,
respectively,

K ut
(o-e)elastic =~ /_i = —, asr—Q0, (14)
NzTr wr
g, J phn
(oﬂ)p]astic = _ﬁ rp/n’ asr — O, (15)
3\ ag,0,l,

with [, denoting a known function of the exponent n (Eq. (3.25)
and Fig. 2 in [13]). In Eq. (14) and Eq. (15), J denotes the value
of the J-integral [14]

ou;
J:f (Wnl—a,-j—uin,-)ds
r (?.xl

as the contour T is shrunk to the crack tip in the FGM case [15].
Equating the asymptotic expressions of Egs. (14) and (15) yields
the following estimation of the plastic zone size:

J ( 3/-“ )(nﬂ)/(n—])

(16)

(ag, )", (17)

rp=—"

O, \ 70,

4 Two-Term Asymptotic Approximation

We now investigate whether and how higher-order terms are
affected by the material property gradient. In Sec. 4.1, we inves-
tigate the conditions under which a separable higher-order solu-
tion is possible for the asymptotic displacement field. In Sec. 4.2,
we compare our results to those of the two-term asymptotic field
around the tip of a crack in a plastic homogeneous material sub-
jected to mode 3 loading, obtained by Aravas and Blazo [13] and
Anheuser and Gross [16] using different solution techniques. The
technique employed here is then extended in Sec. 4.3 to the mode
3 fracture problem in a graded plastic material. As will be seen in
the following discussion, the exponent of the second term in the
homogenous case plays a key role since it provides an upper
bound for the region of validity of the FGM solution.

4.1 Existence of a Separable Solution. In Sec. 2, all the
material properties that possess a spatial dependence were com-
bined into one single functional form described by Eq. (7). A
specific radial variation of G(r) can be arrived at by choosing
different variations of the underlying material properties («, &,
and o,). Note once again that in the present analysis the hardening
exponent n is not allowed to vary with position. The equilibrium
equation (8) can be rewritten as

Journal of Applied Mechanics

4 —=
_____ - -7 ¢
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Fig. 1 Influence of property gradient exponent ¢ on the varia-

tion of plastic material properties surrounding the crack tip lo-
cated at r/re=0

GA\(g,,e9,n) + Ay(e,,80,n)rG' =0, (18)
where A and A, are differential operators that depend only on the
angle 6 (Egs. (12) and (13)). Expressing G as

G=Gy+ ¥r), (19)
where G is the material property at the crack tip (with Gy>0)

and ¢(0)=0, the leading orders of the equilibrium equation are
recast as

G()A] = 0,

!
-
A+ rw—()/\z =0.
Y(r)
A variable separable solution is possible in the graded case only
when

(20)

%:cé lﬂ(}’)=Gl<i) ,

where G is a constant and r denotes the aforementioned intrinsic
length scale associated with the material property gradient. The
leading term derived in the previous section is recovered if the
gradient exponent ¢=0 and this case is not considered hereafter.
To keep the modulus G positive and bounded in the vicinity of the
crack tip, ¢ and G, must be strictly positive (¢>0,G,>0). The
physical significance of ¢ can be visualized in Fig. 1, which pre-
sents the variation of G over the graded region for G;=3G. De-
creasing the value of ¢ makes the property variation near the crack
tip more severe. Thus the value of ¢ is expected to control whether
higher-order terms near the crack tip region will be affected by the
material property variation or whether they will remain the same
as in the homogeneous case. For example, it is clear from Fig. 1
that, for a value of ¢=5, when viewed at the scale of the entire
gradient, the material appears essentially homogeneous in a large
region surrounding the crack tip (up to approximately r=0.3rz).
The opposite is true for a small value of ¢(c<1), where the ma-
terial gradient is very strong in the vicinity of the crack tip and is
therefore expected to affect the asymptotic fields. Note finally that
G| can be negative, leading to a “softening” radially varying FGM
for which the “stiffness” parameter G(r) decreases away from the
crack tip. As will be shown later, the combined effect of the sign
and amplitude of the material gradient can be captured by a single
parameter.

A variable separable solution to the crack problem does not

(21)
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appear to be possible in the FGM case for a property variation
other than that described by Egs. (19) and (21). However, it is
important to recognize that we are only interested in higher-order
contributions to the asymptotic solution and that Egs. (19) and
(21) with ¢=1 can be considered as the first two terms of a Taylor
series expansion for G in the vicinity of the crack tip

G(r)=GO+Gl(rL> T
F

(22)

To conclude this section, let us mention that the introduction of a
material length scale in a fracture problem may change the con-
ditions for existence of a separable solution. In a recent example it
was found that no separable solution was possible within the
framework of the gradient theory of plasticity [17].

4.2 Homogeneous Case. This homogeneous case has been
solved by Aravas and Blazo [13] using a stress-based formulation
and Anheuser and Gross [16] using a perturbation technique. In
the displacement-based approach adopted here, we start from the
following form of the near-tip displacement field w:

p+1 g+1
w(r.) xA<L) f(6)+B<L> g(6) asr—0, (23)
rp rp rp

where A and B are nondimensional amplitude factors, p and g are
the exponents for the leading and second terms, respectively (with
q>p). Substituting Eq. (23) into Eq. (8) yields, for the two lead-
ing orders,

Ar3”’1d)1 = 0,

Brr gy =0, (24)

where the first equation is identical to that used to derive p and f,
and

b3=[n(p+1)*f+ 118" +2[n(p+ g+ 1fg +fg' 1"+ (1 -n)
X(p+ Dff'2q+1)g" + (1 -n)l(p+ 1)fg" + (g + 1)gf'1(2p
+Df +H{(p+ 1’ +nfqlg+ Dg +2{(p + (g + 1)fg
+nf'g"tp(p+ Df +n{(p+ 1+ Mg + Dg +2n{(p + 1)
X(g+Dfg+f'g'p+1f. (25)

The eigenvalue problem for g and g(6) is completed with the

boundary conditions [g(0)=g’(7)=0] and a normalization condi-

tion [chosen here to be g’(0)=1] and can be solved numerically,
leaving the amplitude B undetermined by this asymptotic analysis.

The variation of ¢ with respect to n (for 1 <n<10) is shown as

open circles in Fig. 2, which also contains the elastic-plastic and

purely plastic solutions obtained by Aravas and Blazo [13]. As can

be seen in Fig. 2, the second asymptotic term is singular for n

>3.5. The value of g obtained for the homogeneous case is de-

noted by ¢, in the remainder of the paper. As discussed in the next

section, g;, plays a key role in the determination of the region of
validity of the asymptotic solution for the FGM case.

43 FGM Case. Let us now turn our attention to the
asymptotic solution for the mode 3 fracture problem in a radially
varying FGM with properties described by Eq. (19) and Eq. (21).
We again seek solutions for the displacement field of the form of
Eq. (23) with ¢ > p. Substituting Eq. (23) into Eq. (8) and rewrit-
ing the boundary and normalization conditions, we obtain the fol-
lowing boundary value problem for g:

~\8
p3+m| —| $=0,
r'p
g(0)=g'(m)=0, g'(0)=1, (26)
where B=c—(g—p), ¢, and ¢; have been defined in Eq. (13) and

Eq. (25), and m=7y A/B with
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Fig. 2 Variation with respect to n of the exponent of the first
(p, dotted curve) and second (g, symbols) asymptotic terms,
including the purely plastic and elastic-plastic solutions ob-

tained by [13]

c

'y=c<i)<2) . (27)
Go/ \rg

The parameter 7 plays a critical role in this asymptotic study, as it
allows us to quantify in a simple unified fashion the combined
effect of the nature, amplitude and extent of the material gradient
(through the exponent c, the ratio G;/G, and the ratio rg/rp,
respectively).

Three separate cases must be considered for the solution of Eq.
(26) based on the sign of B.

Case (i) B<0 (g>p+c):

Asymptotically, Eq. (26) reduces to ¢,=0. Since ¢, depends
only on f [Eq. (13)], this would require f to make ¢, and ¢,
vanish simultaneously. Such a solution is not possible and no
separable solution can exist for the second term in this case.

Case (ii) B>0 (g<p+c):

In this case, the coefficient of ¢, does not contribute asymp-
totically to the solution and hence the function g must satisfy
¢3=0. The solution to the FGM case is thus identical to the ho-
mogeneous case described in Sec. 4.2 up to the second term (i.e.,
q=qy)- It is possible that the third-order term may be affected, but
this is beyond the scope of this work.

Case (iii) B=0 (g=c+p):

In this particular case, the FGM solution for the second-order
term is different from the homogeneous one. Unlike in the homo-
geneous case where ¢ was the solution of an eigenvalue problem,
q is now fully determined by the values of the “material” expo-
nents n and c, as

q=c+p, (28)
with p=-n/(n+1). This FGM case presents another distinguish-
ing feature: the amplitude parameter B appearing in the second
term of the near-tip expansion Eq. (23), which was left undeter-
mined in the homogeneous case, is now fully determined. Only the
amplitude of the first term [denoted by A in Eq. (23)] is left
undetermined by the analysis and can be related to the value of the
J-integral. As indicated earlier, this separable solution is only
valid for a limited range of ¢ values: 0 <c<c.«=¢,—p- Indeed,
when ¢ exceeds ¢,y We revert to case (ii) discussed above, and
the second term of the asymptotic expansion in the FGM case is
given by that of the homogeneous problem. In that case, the gra-
dient may affect only the third or higher-order terms in the expan-
sion. This result is consistent with the comments made earlier in
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Fig. 3 Variation of m with respect to the material exponents n
(1=n=<10) and c [0<c=<cCx(N)]

Fig. 1. Physically, increasing ¢ makes the property change less
steep around the crack tip, thus extending the range over which
the material can be considered “homogeneous.” The homoge-
neous exponent g, i.e., the strength of the second term in the
homogeneous case, therefore determines, through c,,x=¢,—p, the
material gradient variation beyond which the second term in the
asymptotic series will be not affected by the heterogeneity of the
material.

For the case of 0<c=c,,. the governing equation for g
becomes

b3 +mep, =0, (29)

with m=vy A/B and vy defined by Eq. (27). The eigenvalue prob-
lem can again be solved numerically. The variation of m with
respect to the material parameters ¢ and n is shown as a contour
plot in Fig. 3 for 1<n=<10 and 0<c<c,,,(n). As expected, m
tends to zero (i.e., for a given value of 7, the second term becomes
increasingly dominant) as ¢ approaches cp,,. When c=cp,y, the
exponent of the second asymptotic term of the FGM case equals
that of the homogeneous case and B becomes indeterminate. The
case n=1 requires special attention. For this value of n, which
yields a linear relation between stress and strain components, no
solution can be found for the eigenvalue problem described by Eq.
(29). The material gradient does not therefore affect the first two
terms of the near-tip asymptotic expansion, in agreement with
earlier results obtained by Parameswaran and Shukla [6].

The angular function g(6) of the second asymptotic term for w
is presented in Fig. 4 for two values of n (n=8 and n=20) and for
four values of the exponent ¢ for each n. As ¢— 0, the second-
order term approaches the first one (¢— p) and g approaches f. In
the other extreme case (¢ — Cpay)s ¢ — ¢ and the corresponding
angular function of the FGM problem approaches that of the ho-
mogeneous one.

5 Discussion

It is clear from the above results that in the FGM problem a
competition takes place between the crack tip stress field setting
up a second term that is the same as the homogeneous case (of
strength ¢g,) and one that is affected by material gradient (of
strength g=c+p). This competition occurs in the shadow of the
most singular term (of strength p) that is the same for the homo-
geneous and graded cases. To visualize the combined effect of the
first two terms of the asymptotic solution, we present contour
plots of the radial (o) and tangential (o) shear stresses (normal-
ized by G) obtained by combining Egs. (5)-(7), (15), (17), and

Journal of Applied Mechanics

< ‘A" . 3
% 0.2 S L
£ .~
Soe
*. '~'~,~
-0.44 ot
H—c=010 |
06 .- o020
—.c=030| T
----- c=0.40
-0.8 = T r . v v r v
0 20 40 60 8 100 120 146 160 180
0
(a)
04 , . A . . ; .
< L e TTemmeeeae
% -0.24 . L
e R T
—0.41 -
[—c=010 |
06N .- c-o1s
- =020
----- c=0.25
-0.8 v - ' v ' v r v
0 20 40 60 8 100 120 140 160 180
0

(b)

Fig. 4 Angular variation of the second asymptotic term for the
graded case for (a) n=8 (Ccphx=0.520) and (b) N=20 (Cpax
=0.283), and for various values of ¢

(23). For reference, stress contours corresponding to the one- and
two-term homogeneous solutions are shown in Figs. 5(a) and
5(b), respectively, for n=8 (p=—-0.889 and ¢,=-0.369) and up to
a radius 7=0.8 rp. In the immediate vicinity of the crack tip, the
solution is completely characterized by the first term. The influ-
ence of the second term is only felt outside of the “core region”
and depends on the adopted B/A ratio (chosen to be 0.3 in these
contour plots). Recall that for the homogeneous case, the ratio
B/A is left undetermined by the asymptotic analysis. Figure 5(c)
presents the one-term approximation of the near-tip stress field for
a large value of n (n=1000). In that case, which can be considered
as approaching the “perfectly plastic situation,” the first two
asymptotic exponents p and g, are very close to each other (p=
—-0.999 and g,=-0.991). The corresponding angular functions are
then almost identical and there is little difference between the one-
and two-term approximations. Due to the more singular nature of
the near-tip solution, the region of stress concentration is smaller
for n=1000 than for n=8, and the near-tip stress fields are char-
acterized by the appearance of sectors, characteristic of perfectly
plastic solutions.
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Fig. 5 Contour plot of the two near-tip stress components
(normalized by Gp) in a circular domain of radius equal to 0.8rp
and centered at the crack tip. The top half of each circle corre-
sponds to o, (which is odd in 6) and the bottom half to o, (even
in ). (a) and (b), respectively, correspond to the one- and two-
term approximations for the homogeneous case with n=8,
while (c) shows the one-term solution for n=1000.

Stress contours obtained from the FGM two-term solution are
shown in Fig. 6 for n=8, ¢=0.4 and for three values of y (y=
-1, 0.1, and 1). Note that a negative value of y corresponds to
“radial softening,” i.e., to the case where the modulus G(r) is
maximum at the crack tip and decreases radially. As mentioned
earlier, unlike the homogenous case, the solution for the second
term is completely determined in the FGM case, as both the ex-
ponent g and the ratio of amplification factor B/A are known. The
only undetermined quantity in the FGM case is thus the amplitude
A, which is related to the J-integral. This is the sole quantity
controlling the extent of plasticity, since rp is proportional to
J/a,. Therefore, the competition between the “load-induced
length scale” rp and “material gradient length scale” rg, quantified
by the parameter y defined by Eq. (27), is clearly visible in Fig. 6.
For small values of 7 (i.e., when the material gradient is small),
the near-tip solution is very similar to that obtained with the one-
term approximation (and shown with the same gray scale scheme
as in Fig. 5(a)). For steeper positive (Fig. 6(c)) and negative (Fig.
6(a)) gradients, the region of dominance of the one-term approxi-
mation is reduced.

This competition is further illustrated in Fig. 7, which presents
on a log—log plot of the radial variation of o directly ahead of the
crack (i.e., for #=0) for the one- and two-term homogeneous so-
lutions, and for five values of vy for the graded material. All curves
have been obtained for n=8 and the FGM solution use ¢=0.4 (i.e.,
all FGM solutions share the same values of the asymptotic expo-
nents p and gq). As expected, very little deviation from the one-
term approximation is observed in the homogeneous case (for
which B/A has been chosen as 0.3), but also in the FGM case with
y=0.1. As v increases, the material heterogeneity reduces the re-
gion of dominance of the one-term asymptotic solution. It is in-
teresting to note that, for FGMs with a positive radial gradient
(i.e., for y>0), the stress distribution described by the first two
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Fig. 6 Stress contour plots (similar to those shown in Figs. 5)
obtained with the two-term approximation for the FGM case
with n=8, ¢=0.4, and y=-1 (a), y=0.1 (b), and y=1 (c).

asymptotic terms does not decay monotonically from the crack
tip, but reaches a local minimum. The situation is of course very
different for radially varying FGMs with a negative material gra-
dient (<< 0): the material heterogeneity reinforces the rapid decay
of the stress field away from the crack tip. Physically, this can be
rationalized by recognizing the natural tendency of a crack tip to
produce a stress field amplifying stresses in the near-tip region but
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Fig. 7 Radial variation of o, ahead of the crack, showing the
effect of y on the region of dominance of the most singular
term (denoted by the solid curve). For comparison, the two-
term approximation is also shown in the homogeneous case
(obtained for B/A=0.3). The curves have been obtained for n
=8 and, in the FGM case, c=0.4.
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decaying at larger distances away from the tip. The local stresses,
however, are also controlled by the local stiffness of the material.
Therefore, in a FGM with a positive radial gradient (y>0), al-
though the crack tip stresses tend to decay as we move away from
the crack, the material is getting stiffer, which in turn raises the
stress level. In the immediate vicinity of the crack tip, the leading
order is dominant and the stresses decay as we move away. How-
ever, when the second-order term becomes important, the material
stiffening effect is increasingly felt and the stress increases as we
continue moving away from the tip. For an FGM with a negative
radial gradient (y<<0), the radially decreasing material stiffness
accelerates the natural decay rate of the stresses induced by the
presence of the crack. Both these effects are clearly seen in Fig. 7.

6 Conclusions

The first two terms of an asymptotic approximation of the near-
tip displacement and stress fields have been obtained for a mode 3
crack embedded in a radially varying plastic FGM described by
the Ramberg—Osgood power law. Taking advantage of the math-
ematical simplicity of the solution we draw the following conclu-
sions:

(1) As is the case in the elastic problem, the material property
gradient does not affect the form of the leading term of the
near-tip approximation, but may affect the higher-order
terms.

(2) A separable solution up to the second term in the FGM case
is possible when the material stiffness parameter G defined
by Eq. (7) follows a power law variation of the form G
=Gy+G (r/rp), with Gy>0 and ¢>0. In this case, the
exponent g of the second asymptotic term is simply given
by g=p+c, where p is the exponent of the first (most sin-
gular) term.

(3) The existence of a second asymptotic term specific to the
FGM case depends on the value of the material exponent c:
if the resulting value of ¢ is less than that obtained for the
second term in the homogeneous case (g;,), the material
gradient will affect the two-term asymptotic solution. Oth-
erwise, it might only affect terms of third order or higher.

(4) Unlike in the homogeneous situation for which the ampli-
tude of all asymptotic expansion terms is left undetermined
by the asymptotic analysis, the amplitude of the second
term in the FGM case is fully determined by the value of
the first one.

(5) The competition between the two length scales characteriz-
ing the fracture problem (the plastic zone size and the ma-
terial gradient length scale) has been quantified in terms of
a single parameter 7y introduced in Eq. (27) that incorpo-
rates the combined effect of the nature, amplitude, and ex-

Journal of Applied Mechanics

tent of the material gradient. The value of this parameter
strongly affects the size of the region of dominance associ-
ated with the most singular asymptotic term, and the nature
of the development of the stresses and displacements out-
side this region of dominance when the second term be-
comes significant.

How these conclusions transfer to more complex material
property gradients and/or loading modes is currently under
investigation.

Acknowledgment

The authors gratefully acknowledge the support of the National
Science Foundation through Grant No. CMS 01-15954.

References

[1] Krassig, K., 1993, “Cellulose: Structure, Accessibility and Reactivity,” Poly-
mer Monographs, 11, Gordon and Breach, New York.

[2] Rabin, B. H., and Shiota, L., 1995, “Functionally Graded Materials.” Mater.
Res. Bull., 20(1), pp. 14-15.

[3] Delale, F., and Erdogan, F., 1983, “The Crack Problem for a Nonhomogeneous
Plane.” J. Appl. Mech., 50, pp. 609-614.

[4] Eischen, J. W., 1987, “Fracture of Non-Homogeneous Materials.” Int. J. Fract.,
34, pp. 3-22.

[5] Williams, M. L., 1957, “On the Stress Distribution at the Base of a Stationary
Crack.” J. Appl. Mech., 24, pp. 109-114.

[6] Parameswaran, V., and Shukla, A., 2002, “Asymptotic Stress Fields for Sta-
tionary Cracks Along the Gradient in Functionally Graded Materials.” J. Appl.
Mech., 69, pp. 240-243.

[7] Parameswaran, V., and Shukla, A., 1999, “Crack-Tip Fields for Dynamic Frac-
ture in Functionally Graded Materials.” Mech. Mater., 31, pp. 579-596.

[8] Anlas, G., Lambros, J., and Santare, M. H., 2002, “Dominance of Asymptotic
Crack Tip Fields in Elastic Functionally Graded Materials.” Int. J. Fract., 115,
pp. 193-204.

[9] Amazigo, J. C., 1974, “Fully Plastic Crack in an Infinite Body Under Anti-
Plane Shear.” Int. J. Solids Struct., 10, pp. 1003-1015.

[10] Hutchinson, J. W., 1968, “Singular Behavior at the End of a Tensile Crack in
a Hardening Material.” J. Mech. Phys. Solids, 16, pp. 13-31.

[11] Rice, J. R., and Rosengren, G. F., 1968, “Plane Strain Deformation Near a
Crack Tip in a Power-Law Hardening Material.” J. Mech. Phys. Solids, 16,
pp. 1-12.

[12] Geubelle, P. H., and Knauss, W. G., 1994, “Finite Strains at the Tip of a Crack
in a Sheet of Hyperelastic Material: 1. Homogeneous Case.” J. Elast., 35, pp.
31-98.

[13] Aravas, N., and Blazo, A., 1991, “Higher-Order Terms in Asymptotic Elasto-
plastic Mode-III Crack Tip Solutions.” Acta Mech., 90(1-4), pp. 139-153.

[14] Rice, J. R., 1968, “A Path Independent Integral and the Approximate Analysis
of Strain Concentration by Notches and Cracks.” J. Appl. Mech., 35, pp.
379-386.

[15] Anlas, G., Santare, M. H., and Lambros, J., 2000, “Numerical Calculation of
Stress Intensity Factors in Functionally Graded Materials.” Int. J. Fract., 104,
pp. 131-143.

[16] Anheuser, M., and Gross, D., 1994, “Higher Order Fields at Crack and Notch
Tips in Power-Law Materials Under Longitudinal Shear.” Arch. Appl. Mech.,
64, pp. 509-518.

[17] Shi, M. X., Huang, Y., Gao, H., and Hwang, K. C., 2000, “Non-Existence of
Separable Crack Tip Field in Mechanism-Based Strain Gradient Plasticity.”
Int. J. Solids Struct., 37, pp. 5995-6010.

JULY 2005, Vol. 72 | 467



Pankaj Wahi’

e-mail: pankaj@mecheng.iisc.ernet.in

Anindya Chatterjee

e-mail: anindya@mecheng.iisc.ernet.in

Mechanical Engineering,
Indian Institute of Science,
Bangalore 560012, India

Asymptotics for the Characteristic
Roots of Delayed Dynamic
Systems

Delayed dynamical systems appear in many areas of science and engineering. Analysis of
general nonlinear delayed systems often begins with the linearized delay differential
equation (DDE). The study of these linearized constant coefficient DDEs involves tran-
scendental characteristic equations, which have infinitely many complex roots not obtain-
able in closed form. Here, after motivating our study with a well-known delayed dynami-
cal system model for tool vibrations in metal cutting, we obtain asymptotic expressions
for the large characteristic roots of several delayed systems. These include first- and
second-order DDEs with single delays, and a first-order DDE with distributed as well as
multiple incommensurate delays. For reasonable magnitudes of the coefficients of the
DDEs, the approximations in each case are very good. Subsequently, a fourth delayed
system involving coefficients of disparate magnitude is analyzed using an alternative
asymptotic strategy. Finally, the large root asymptotics are complemented with calcula-

tions using Padé approximants to find all the roots of these systems.
[DOI: 10.1115/1.1875492]

1 Introduction

Delay differential equations (DDEs) are infinite-dimensional
systems which find application in manufacturing processes, con-
trol systems, biology, economics, chemical kinetics, and other ar-
eas [1-9]. The simplest linear DDEs have constant coefficients, as
in

X(1) = ax(t) + Bx(t - A), (1)

where A > 0. The solution of Eq. (1) is a sum of terms of the form
eM [10-14], where \ satisfies

A=a+ Be ™.

This equation determines the infinitely many characteristic roots
of the DDE, impossible to find in closed form. If all these roots
have negative real parts, then all solutions decay to zero and the
system is stable. A root with a positive real part implies an expo-
nentially growing solution (system unstable).

In this paper, we find all the characteristic roots of some linear
constant coefficient DDEs.

The study of linear constant coefficient DDEs is important
since analysis of general nonlinear DDEs often begins with a pre-
liminary study of the linearized DDE (e.g., [7]). Analysts often
seek conditions under which the system is stable. This search is
nontrivial because there are infinitely many characteristic roots
not obtainable in closed form. Significant stability results have,
nevertheless, been obtained (e.g., chap. 10 in [10], Theorems 4.1—
4.3 in Sec. 11.4, Theorems 5.1-5.3 in Sec. 11.5 in [12], Sec. 1.2
and 1.4 in [13], and chap. 2 in [14], etc.; see also [15,16]). The
above references contain results pertaining to either all roots hav-
ing negative real parts, or specific parameter values for which a
pure imaginary pair exists. It is also possible to count the number
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of roots in the right half of the complex plane [14,17].

Whether the system is stable or not, it is of further interest to
find out where the characteristic roots lie. The geometrical distri-
bution of these characteristic roots is important in proving theo-
rems on series expansion and asymptotic behavior of solutions;
see Bellman and Cooke [10]. Results in similar directions have
also been obtained for specific equations by others (e.g., Sec. 1.4
of [12], Sec. 11.3 of [18], etc.). These theorems show for certain
DDEs, e.g., that there are finitely many roots in any vertical or
horizontal strip in the complex plane.

Numerical algorithms for finding the characteristic roots of lin-
ear constant coefficient DDEs have been given in [19,20]. How-
ever, they are computationaly efficient for finding the first few
roots only. Sandquist and Rogers [21] have sought the character-
istic roots for scalar linear first-order DDEs; they consider a single
delay, and graphically determine the roots of a transcendental
equation in one variable.

As mentioned above, in this work we aim to determine all the
roots of some linear constant coefficient DDEs. Our approach is
based on asymptotic calculations for the large roots, a Padé ap-
proximant for a small number of roots that are not large, and
numerics (the Newton-Raphson method) to refine these roots. Al-
ternative asymptotics are also used for the not very large roots of
a DDE involving coefficients of disparate magnitude.

It may be noted that Bellman and Cooke [10] have obtained
leading order asymptotics for characteristic roots of a class of
DDEs with multiple commensurate delays. In contrast, here we
find correction terms in the expansions, giving very accurate esti-
mates. Moreover, incommensurate delays are included in our
study. Finally, DDEs with coefficients of disparate magnitude are
considered as well.

2 Mechanical System With Delay

A schematic of the turning process in three-dimensional (3D)
space, and a 2D projection of the same on the x-y plane, are
shown in Fig. 1. The derivation below is that of Stépan [1]. Intro-
duce a “long” discrete time delay 71 =2/}, where () is the speed
of workpiece rotation in rad/s. This is the time period of one
revolution. Also introduce a “short” continuous delay h=2L/QD,
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Fig. 1

Simple model for tool vibrations

where L is the length of the tool-chip contact region and D is the
diameter of the workpiece. This is the time during which the tool
and the chip are in contact.

The linear model of regenerative machine tool vibration in the x
direction, considering both the long discrete and the short continu-
ous delays, is given by Stépan [1] as
0

¥(t) + 2hw, i (1) + wlx(1) + % J W(O)x(t + 6)do

—h

ke [
- f W(r, + 0)x(t + 6)do=0, 2)
m -7=h

where w,= \e’k/7 is the natural angular frequency of the tool, ¥
=c/2\mk is the damping ratio, k; is the slope of the F, versus f
curve? at f=f,, and W(6) with 6 e [~h,0], is the stress distribution
function over the tool-chip contact region.

When W(6)=45(6), there is only the long discrete delay 7, and
on suitable rescaling of time, Stépan obtains

(1) + 24 (2) + (1 + p)x(t) = px(1 = 7) =0, 3)

where p=k1/mw2, and 7=w,7,. Equation (3) is also derived in

[7]. If 7=1, for simplicity, we have
X422+ (1 +p)x—px(t=1)=0. (4)

We will study the characteristic roots of Eq. (4) in detail in Sec. 4.

When W(6) # &(0) in Eq. (2), we have an integro-DDE which
represents a distributed delay effect.

If W(6) is approximated by more than one Dirac-delta function,
e.g., W(0)=48(0)+5(0+h), we get a delayed system with multiple
delays which could be incommensurate. Note that systems with
incommensurate delays are not amenable to analysis using
Pontryagin’s criteria [22] (see also [12]). But we will consider
such systems below. Note that incommensurate delays can also
arise in other applications, e.g., a system where a microphone
picks up signals from two unequally distant speakers and gives it
as a feedback to the amplifier driving them.

3 Preliminary Example
We begin with the equation (e.g., [12,13])

X+ax(t=1)=0. (5)
Assuming x(1)=C ¢M as usual, we obtain
N+ae™=0. (6)

Letting A=a+i B and separating real and imaginary parts, we
obtain

a+ae“os B=0, (7)

B—a e “in B=0. (8)
, and that

We assume «a is nonzero and O(1) compared to |\
=0 (-p gives another solution).

Here [ is the chip thickness, and F, is the x component of the cutting force.
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Fig. 2 Roots of Eq. (6) for a=1

PROPOSITION 1. In the large roots of Eq. (6), <0 and «
=0O(In B).

Proof. If, in the large roots, a is not large [i.e., is bounded or
O(1)] then Eq. (8) gives the contradiction B=0O(1). If « is large
and positive, then Eq. (7) gives the contradictory a=0(1). There-
fore, « is large and negative. Then Eq. (7) implies, in the
asymptotic limit, that cos 8=0, which gives sin B=+1. By Eq. (8)
we can show that, for integer N> 1

a~—ln(£) andﬁ~<2N+M>ﬂ'. |
lal 2

Roots found numerically by the Newton-Raphson method,
along with the asymptotic approximations themselves, agree well
in Fig. 2.

4 Second-Order DDE

We now consider the equation derived in Sec. 2,

X(@) + 24 (@) + (1 + p)x(t) = p x(1=1) =0, ©)

For this equation, for small p, all characteristic roots lie in the left
half plane [7]. Here, we develop large-root asymptotics for p non-
zero and finite. Note that second-order delayed systems have long
been of interest due to mechanical applications [15,16,23].

In Eq. (9), we let x=C eV, set A\=a+i 3, and separate real and
imaginary parts to get

=P +2pa+1+p—pecos B=0, (10)

2aB+2¢YB+p e “sin B=0. (11)

We now eliminate large regions of the complex plane from our
consideration. We divide the upper half plane qualitatively into the
regions shown in Fig. 3, and investigate them one by one. The
lower half plane is symmetrical, hence excluded. We will elimi-

A Region 3
lof << Bl

Region 2
(o, Bcomparable)

Region 4
(o, Bcomparable)

Asymptotics not valid

1Bl << Jail
- Region 5

1Bl<<la
Region 1 - O

Fig. 3 Regions considered in the complex plane
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nate regions not containing any roots. In the shaded area roots are
not large, and our asymptotics do not hold.

PROPOSITION 2. For Eq. (4), large roots have large a and occur
only in the left half of region 3, Fig. 3.

Proof. If ais O(1) in the large roots, it leaves an unbalanced /3
in Eq. (10). So « is large.

First consider regions 1 and 2, as well as the right half of region
3. Since a>0 here, 0<e™*< 1. In Eq. (10), since large @ means
o> a, we balance the two largest terms to get & ~ 8. Using this
in Eq. (11), we find nothing can balance the large term 2af3.

Next, consider regions 4 and 5. Here, e~ is exponentially large
compared to both & and B as well as algebraic powers thereof.
Equations (10) and (11) then lead to the contradictory

cos’B+sin’B<1.

By elimination, only the left half of region 3 contains large
roots. |

PROPOSITION 3. Equations (10) and (11) are satisfied by a=
-2 1n B+In|p|+o(1) and B=[2N+(1+sgn(p))/2]m+o(1), for inte-
ger N>1.

Proof. By proposition 2, 8>|a|>1 for the large roots. We
substitute @=gu In B+z in Egs. (10) and (11), with the assumption
that |z|<In B, to get

w2(In B>+ 2u(z+ p)In B+ 22— B*+ 24z + 1 +p—p B He“cos B
=0, (12)

2uBln B+2zB+2¢B+p B e *sin B=0. (13)
In Eq. (12), B2 is asymptotically bigger than all other terms [in-
cluding u?(In B)>~ a?] except possibly p B*e %cos B, so these
two terms must balance each other. Note, p # 0. This gives

B e “cos(B) = O(B).
Taking absolute values and then logarithms
—uln B+Injcos 8| ~21n B,

where we have dropped z since it is smaller than In 8.
In the above, we could conceivably have 0 <|cos 8| <1, and in
fact small enough that In|cos B|=O(In B). This, however, requires
B e™> 82 which leaves a large term B *e %sin B8 (with sin 8
~ +1) unbalanced in Eq. (13). Therefore, to balance terms, we

must let w=-2. Then Egs. (12) and (13), on dividing by 8> and
dropping smaller terms, give

(14)

pecosB~—-1, (15)

p e %sin B=o(1). (16)
Since pe~?=0 violates Eq. (15), we must have sin 8=0(1) from
Eq. (16), whence cos B~ = 1. Consequently, pe™*~ F 1. The re-
sult follows. |
We can now develop formal series as follows (assuming p > 0;
the other case is analogous). Having balanced B8 terms, we still
retain O(B) terms, which are relatively smaller by a factor of
O(1/N). Accordingly, we write (note the slightly different form
for a, now dependent explicitly on N)

Bi . B
B=(2N+])W+N+ﬁ+“.’ (17)
a @
a=—21n[(2N+1)7r]+lnp+—N+N—2+~--. (18)

Substituting into Egs. (12) and (13), expanding in series, collect-
ing terms (using Maple 6 (Windows)), and solving for the unknown
coefficients, we obtain

1=

2In2N7) ——Inp

o
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Fig. 4 Roots of Eq. (4) with #=0.1 and p=2

'
L)

B 2In(2N7w) - y—Inp-2

21 ’

2
a; =0,

1
azz—m(—l+81n771nN+81n771n2+81n21nN

—4In@2Nm)Inp -4 In2N7) +2Inp + 24 Inp + 247 — p
+44).

While collecting terms above, we have treated In N as O(1) com-
pared to N.

The above approximations agree well with roots obtained using
Newton-Raphson; see Fig. 4. There are just three relatively small
roots (one real, one complex pair) not captured by the asymptot-
ics; those are not plotted here.

5 DDE With Multiple and Distributed Delays
Consider
1
X(t) + ax(t) + ax(t — 1/\5) +asx(t—1) + a4f x(t—s)cos s ds
0
=0, (19)

with a3 # 0. The characteristic equation is (we multiply by A\?+1
to simplify the expression, but introduce spurious roots at A==+i
which we ignore)

—aze™IN cos(1) + age™sin(1) + agh + aze™IN + ae™
+ a2e("”‘§))\2 + a2e("”“§) +a N +a + N +1=0.

Substituting A=a+i and separating real and imaginary parts, we
get

—ase”“acos 1 cos B—ase”*Bcos 1sin B+ ase”*sin 1 cos B
+aga— aze” B cos B+ 2aze % Bsin B+ aze”“a’ cos B
5 =
+aze “cos B+ 2a,e” 2o Bsin(B/\2)
N2 2 [5 2 2 [y
+ a,e” " a” cos(BIN2) — ae™ "B cos(B/\2)
+ a2e—a/\§

:0,

[ 2 2 3 2
cos(BN2)+aja" —a | +a+a -3a B+«
(20)
ase “acos 1sin B—aye B cos 1 cos B—aze sin 1 sin B+ ayfB
— aze™%a? sin B+ 2ay¢™%a Bcos B+ aze B sin B

— aze™sin B+ 2a,e"" 2 Bcos(B/\2)
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—a,e” 22 sin(B/ \5) +a,e” “5/32 sin(B/ \5)

— a2 sin(BN2) + 2a,a B+328- B+ B=0.  (21)

We again eliminate regions of the complex plane from consider-
ation.

LEMMA 1. In that portion of region 3 where B> |a|>1, Egs.
(20) and (21) simplify to

2aze~aBsin B - ase" B2 cos B+ 2ae "o sin(B/2)

— a2 cos(BIN2) - 38 = DST, (22)
and
2aze~aB cos B+ ase~ B sin B+ 2a,e "2 a8 cos(B/\2)
+aye= 28 sin(BI\2) — B2 = DST, (23)

where DST stands for “demonstrably smaller terms.”
Proof. Consider first the coefficients of ¢™“cos 8 among the
terms appearing in Eq. (20), i.e.,
- aquacos 1, -af, aza,

aysinl, and as.

The largest of these is —a3/3%, so we drop the other four. Similarly,
of the two terms containing e™* _sin B, one is dropped; among
terms containing e~*"2 cos(8/v2), all but one are dropped;
among the rest excluding the term with e*\?sin(8/12), only
3aB? needs to be retained. Similar simplifications are made for
Eq. (21) (details omitted). |

PROPOSITION 4. The large roots of Egs. (20) and (21) have large
a and lie only in the left half of region 3, Fig. 3.

Proof. For large roots, a=O(1) leaves 8° unbalanced in Eq.
(21). So a is large.

We first drop regions 1 and 2 from our consideration, as fol-
lows. In these regions, terms containing e~* can be dropped, being
smaller than other terms, giving

aga+a®—a P +a + o -3af+a=o(1), (24)

a,B+2a,aB+32B- B+ B=0(1). (25)

In region 1, the largest term o is unbalanced in Eq. (24). In

region 2, the leading terms in Egs. (24) and (25) give o’ ~3a3>
and 3a?B~ B3, which have no nonzero solutions.

Now we drop the right half of region 3, as follows. By Lemma
1, Egs. (22) and (23) hold in this region. Since &> 0 in the right
half, we have 0 <e™®<e~*“2< 1. This leaves the largest term /3
unbalanced in Eq. (23).

We next consider regions 4 and 5. Here, <0 (and large), so
e~ *> ¢ 2 which in turn is much greater than both a and S as
well as algebraic powers thereof. Hence, retaining only the terms
containing ¢™® in Egs. (20) and (21), we get

aysin 1 cos B—ayacos 1 cos B—ayBcos 1 sin B+ aza’ cos B
+2aza sin B— a3 8% cos B+ a; cos B=DST, (26)
and
ayacos 1 sin B—ayBcos 1 cos B—ay sin 1 sin B—aza’ sin B
+2aza cos B+ as B sin B—ay sin B=DST. (27)

In region 4, the quadratic terms in « and B dominate in Egs. (26)
and (27), giving (since a3 # 0)

— o’ sin B+ 2afB cos B+ 3 sin B=DST, (28)

o?cos B+2apsin B— Bicos B=DST. (29)

Multiplying Eq. (28) with sin B, Eq. (29) with cos 3, and subtract-
ing, we find

478 / Vol. 72, JULY 2005

B* - a*=DST,

which means 8~ a. However, that in turn leads to the contradic-
tory

cos B=o(1)

cos’ B+sin’ B<1.
(30)

In region 5, o? dominates in Eqs. (28) and (29), giving the same
contradiction as Eq. (30). Hence, we conclude that asymptotically
large roots lie only in the left half of region 3. |
PROPOSITION 5. Equations (20) and (21) are satisfied by a=
—In B+In|as|+o(1) and B=(2N+sgn(as)/2)m+o(1).
Proof. By Proposition 4 and Lemma 1, we have the simplified
equations, Egs. (22) and (23) (reproduced below).

and sinB=o0(1), i.e.,

2aze~aB sin B— ase~"B2cos B+ 2are~ 2 sin(B/2)

— a2 Beos(BI\2) - 3a8? = DST, (31)

and
2ase™%aB cos B+ aze*Bsin B+ 2a2e""/‘ia,3 cos(,B/\c‘E)

+ a2 B%sin(BI\2) - B = DST. (32)

Here a<<0 and |a|>1 so that e ®>¢ “V?>1. In Eq. (31),
e~%f%cos B is asymptotically larger than any other term unless
cos B=o0(1), whence sin S~ x1. Using this in Eq. (32), the two
largest terms have magnitudes e~%8% and 3. This gives

aze “f*sin B— B =DST.
For a3;>0, we require sin S~ 1 which leads to

B=02N+1/2)m+0(1) and a=-InB+Inas+o(l),

(33)
while for a; <0, we require sin S~—1 and hence
B=02N-1/2)m+0(1) and a=-1InB+In|as]+o(1),

for large integer N. |
We now find two correction terms in a formal series. The pro-
cedure is somewhat more complicated than before.
The second largest terms in Egs. (22) and (23) are of

O(B17+2)) compared to B°. This suggests a formal series in
powers of N-=1\2) However, there are terms of O(8"),O(872),
etc., whose powers are not integer multiples of 1-1/ y’Z, and so

the formal series should have mixed powers of N-1=1\2) and N-1.
We therefore anticipate a series of the form

Bi B ... Bu Bu,

NU-112) + A20-112) '

B=0C2N+1/2)m+

+ mixed powers.

Note, however, that the first mixed power is of the form

1 1 1
_<_

Nl-l/\i X N

s

and so if we retain only the first two small corrections, then we
have the somewhat simpler expression

Bi B
N(l—l/\‘i) Nz(l-l/\i)

B=02N+1/12)m+ +h.o.t. (34)

where “h.o.t.” stands for higher_ order terms. Note that 1/ \_2
~0.7 and so (roughly) N-0-1"2=nN-03 Similarly, N-2(1-1/\2)
~N00> N-I> “mixed powers.”

For analytical convenience, we take the leading order solution
for a as a=-In B+z, where z<<In 8 and express the correction z
in a series as
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z=In(az) + +h.o.t. (35)

<] + 2
N(l—]/\‘E) N2(]—1/\“§)

Substituting @ in Egs. (22) and (23) and dividing throughout by
B3, we get

1
— 1+ aze~%sin(B) +a25in( i) = /\25-(1 1/\2)+(’)( r}f) 0,
\J

(36)

3 _IN3 In g
2IN2 —-(1-1/42) O(_)zo
) O

(37)
Substituting Egs. (34) and (35) in Egs. (36) and (37), followed by
expanding and collecting terms finally gives

B, = 2(—2+\E)/27T(—2+\§)/2a2a31/\ECOS( (412\] %1) 77) ’
N

‘E‘ﬂ|m

ase~“cos(B) + acos (

2 =20 2D g1/\2 <(4N+ 1) )
2V2

== 8:72(2\277 a2a3‘2(1 \2)c s(w\i—gl)fr))

Figure 5 shows some of the characteristic roots of Eq. (19)
obtained numerically using the Newton-Raphson method along
with the asymptotic approximations, which are in good agree-
ment.

Remark 1. The smaller characteristic roots of DDEs can be
found using Padé approximants ([24,25]). These, along with the
asymptotics above, can give all the roots. The procedure requires
arbitrary precision arithmetic (in, e.g., MAPLE). See the Appendix.
These can be found using the Galerkin projection technique [26].

6 Asymptotics on Coefficients

In the above DDEs the term with the largest delay essentially
determined the large roots. For DDEs with multiple delays, how-
ever, if the coefficients of delayed terms have disparate magni-

30ur calculations were done using MAPLE 6 (Windows), which, for these irrational
powers, needs a little patience. We found it useful to do the expansion one term at a
time. For each term, we divided by the (known) largest surviving power of N, and
then asked for the limit as N — .
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tudes, then the above asymptotics may only begin to hold for
extremely large roots. In such cases, we could develop alternative
asymptotic expansions. We present one example

x(t- 1/\5)

x(t)+f+ax(t—l)=0, (38)

where 0 <e<1. Note that this is a special case of Eq. (19) with
a,=1/€,a3=a and a;=a,=0. Substituting N=a+iB and separat-
ing real and imaginary parts, we get

e ‘Ecos( B/ \E)
& COSPING

+ae %cos B=0, (39)
€
—a//\i : J E
g SN e g0, (40)
€

Remark 2. The above two equations each have three terms.
However, there are regimes of root magnitudes for which, in each
equation, two of the terms are much bigger than the third. Our
analytical search for roots will focus on these regimes. In what
follows, we adopt the following convention. If the mth and nth
terms, with m=1,2,3 and n=1,2,3, are negligible compared to the
other terms in Egs. (39) and (40), respectively, then we refer to it

s “Case (m,n).” The large root asymptotics developed in the
previous section correspond to Case (2,2).

Remark 3. The leading order solution of Eq. (19) given by Eq.
(33) also represents roots of Eq. (38), under Case (2,2). Substitut-
ing Eq. (33) in Eq. (40), the first and third terms turn out to be of
O(N) while the second term is of O(NY\2/¢€). Hence, the second
term is negligible for

N> N"2e je, N> @D,

Alternatively, the asymptotic expressions of Egs. (34) and (35),
for the roots of Eq. (19), are based on the correction term being
o(1). For Eq. (38), viewed as a special case of Eq. (19) (with a,
=1/e), substitution of B; found in Sec. 5 in the series solution for
B. i.e., Eq. (34) gives the first correction term to be

2(72+ \“‘5)/2 77(72+ \“E)/2a71/\§ (4N + l)
6N(1—1/\‘§) cos 2 \}’E ™.

For the above to be o(1), we require N> e 2*2) matching the
above.

The asymptotics developed below are therefore for N smaller
than the above estimate. How much smaller is a somewhat tricky
issue as discussed later.

By remark 2, our analytical search for the roots will concentrate
on regimes where two of the three terms in each equation, i.e.,
Egs. (39) and (40), are much larger than the third one. Accord-
ingly we have nine different possibilities, one of which, Case (2,
2), has been dealt with in the previous section. Here, we check the
remaining possibilities one by one for the existence of roots and
obtain expressions for them.

PROPOSITION 6. Case (1,1) yields a set of solutions for Egs. (39)
and (40).

Proof. Equations (39) and (40) simplify to

~ah2cos(BIN2
—('B ¥2) —ae “cos B+ ST, (41)
€
—a/\‘z . / “‘E
CTSIBND) _asin g+ ST, (42)

€

where “ST” stands for an asymptotically smaller term. Squaring
Egs. (41) and (42) and adding, in the asymptotic limit we get

_\“‘50’
¢ 2 2a

(43)

Hence, to leading order we have
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a=02+ \E)ln(ea). (44)

Substituting « in Egs. (41) and (42) and rearranging, we get in the
asymptotic limit

a—(1+\§) E_(2+\§)[COS(B/\E) +cos IB] =0,

a"(l+“5)e"(2+“5)[sin(3/\r’5) +sin B] =0.

Again squaring and adding we get

2(1_(14—\5)6_(24-\5) 1 +COS( B .—) =0
2+

which requires cos(B8/2+ \"‘5):—1, giving

B=0CN+1)(2+\2)m. (45)

Equations (44) and (45) give solutions for Egs. (39) and (40). H

We further investigate these roots for small € and large N as
follows. Substituting Egs. (44) and (45) in Eq. (40), we note that
the first term is of O(N) while the second and the third term are of
O(€®*2)). Hence, the assumption that the first term is negligible
for Case (1,1) is valid as long as N< e‘(z"\“cz)._Note that this is
complementary to Case (2, 2) where N> e 2*'?) (by remark 3).

We proceed to a correction term. We add corrections 3; and «;
to the leading order solutions for 8 and «, i.e., in Egs. (44) and
(45), respectively. We substitute « and B in Egs. (39) and (40),
expand in a Taylor series about a;=£,=0, drop quadratic and
higher order terms, and solve for 8, and «; to get

@M% (@aN + 2)meos[ 2+ V2)@N + D] + 2 In(ae)sin[ (2 +V2) 2N + Dar]}

Bi

=
—3+242

a;

Since we are interested in N< e 22 for this case we find, self-
consistently, that 8;=0(1) and a;=o0(1). This concludes Case
(1,1).

Remark 4. In the above, we established the range of B (or
equivalently N) over which the asymptotic expressions hold, i.e.,
B< €2 In what follows, such sharp estimates on 8 may not
always be easily obtainable. Sometimes, for simplicity, we will fix
B at some e-independent range of magnitudes and take the limit as
€— 0. Eventually, numerics will bear out the final analytical ap-
proximations.

LEMMA 2. If r is an irrational number and either sin =0 or
cos 6=0, then sin(r6) # 0 and cos(r6) # 0.

Proof. sin =0 requires #=n1r, for some integer n. However,
sin(r6) =0 requires r@=mar, for some integer m. Simultaneous sat-
isfaction of both the above requirements imply, contradictorily,
that r=m/n. Similar contradictions arise for the other cases. W

PROPOSITION 7. Case (2,1) can be eliminated.

Proof. From Egs. (39) and (40), we have

a=—-ae %os B+ ST, (46)
—a/\2 [
e sin(B/V2
TSI | ain B+ST. (47)
€
Squaring and adding, we get in the asymptotic limit
e~ 2asin2(B\2
¢ sin (B12) +d=a’e™. (48)

e

There are three possibilities now: a>1, a=0O(1), and a<-1.

1. If a> 1, the right-hand side (RHS) of Eq. (48), i.e., a%e™>“
=o0(1). However, in the LHS, o?>1 while the first term is
positive, giving a contradiction.

2. If @a=0O(1), the first term remains unbalanced in Eq. (48)
unless sin’(8/ Va)f 1. However, Case (2,1) implies for Eq.
(39) that cos*(B/ V2)<1 as well, giving a contradiction be-
cause sin?(.)+cos?(.)=1.

3. If a<<—1, then a®<<e¢™2® and Eq. (48) simplifies to
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€% H@N + 2)wsin 2 +12) 2N+ ) 7] - 2 In(ae)eos| (2 +V2) N + 1) ]}
-3+2\2 '

e osin’(B1\2)

62

Also, Case (2,1) implies for Eq. (39) that cos(B/ \2)
=0(1), when sin*(8/y2)~ 1. In that case, Eq. (49) simpli-
fies to Eq. (43) which has Eq. (44) as the leading order
solution for a. Substituting Eq. (44) for « in Eq. (47), we
require in the asymptotic limit

2442 ) (2-\5 )—o
4 B |cos 2 B1=0,

which contradicts our Prior conclusion that cos(B/ \5):0
in the asymptotic limit”" (by Lemma 2).

a’e™>* + ST. (49)

sin(,B/\c“E) +sin 8=2 sin(

Thus, Case (2,1) gives no roots. [ |
PROPOSITION 8. Cases (3,1), (1,2), and (3,2) can also be elimi-
nated.
Proof. The proof resembles that of Proposition 7 and is not
given here to save space. |
PROPOSITION 9. The three Cases (m,3) m=1, 2, 3 lead to one
set of solutions for Egs. (39) and (40).
Proof.

1. For Case (1,3), from Egs. (39) and (40) we get

e “chos( Bl \5)

€

=—ae “cos B+ ST, (50)

e “Esin( B/ \E)
_—

€

B= ST. (51)
Note that Case (m,3) implies that 8> ae~%|sin 8|. Accord-

ingly, we have two subcases, in the asymptotic limit, viz.,
sin 8=0 and sin B#0.

“Note that we have considered B fixed as e— 0. An argument allowing 3 to grow

as €e—0 can be developed, but is trickier and avoided here.
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Fig. 6 Roots of Eqgs. (39) and (40) for a=1 and €=0.05. Plus
signs: Newton-Raphson. Circles: asymptotic, Case (1,1). Tri-
angles: asymptotic, Case (m,3). Rectangles: asymptotic, Case
(2,2).

e If sin 8=0 in the asymptotic limit, we have cos f==1. In
that case, solving Eq. (50) for a, we get

a=02+ \E)lﬂ(L,—) .
|cos(B/V2)]

Substituting the above in Eq. (51), we will require

212012 B = sin(BN2)cos 2 (B 2).

In the asymptotic limit as €e—0, we will require either
sin(B/ \E)zO or cos(B/ \E)zO which contradicts sin 8=0
(by lemma 2).

e If sin B# 0 in the asymptotic limit, we have 8> ae™*. Also,
from Eq. (51), we have e="2/e= B> ae™@. Hence, for bal-
ance in Eq. (50), we require cos(8/v2)=0 (in the
asymptotic limit), giving

B=(C2N+1/2)\2m+0(1). (52)

Substituting the above for B in Eq. (51) and solving for «,

we get
a=—\2 In[e@N + 1/2)\27] + o(1). (53)
This concludes Case (1, 3).
2. For Case (2,3), we have
a=-ae %os B+ ST, (54)
po CSn(EN2) D) o (55)

€

Again B> ae %sin 8

, giving two subcases as before.

e If sin =0, we have cos B=+1 and Eq. (54) reduces, in the
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Table 1 Root improves with precision of arithmetic
Digits used 6 8 10
First root 1.0452 1.044 639 8 1.044 64353

asymptotic limit, to

axae “=0.

The above has at most one solution for a which, in turn, is
O(1). In that case, e=®2=0(1) and Case (2,3) requires
cos(B/ VE):O contradicting sin 8=0.

e If sin #0 in the asymptotic limit, we have 8> ae™®. Also
from Eq. (55), we have e\2/e= 3. Now, Case (2,n) re-
quires [e=*2cos(B/ \E)]/ e<ae~*< . This is possible only
when cos(B/ \E):O giving Egs. (52) and (53) as the solu-
tions again.

3. For Case (3,3), we get from Egs. (39) and (40)
e “Ecos( B/ \E)

a=— ————" 18T,
€

(56)

e ‘Esin( B/ \6)
—_—

€

B= ST. (57)

In the asymptotic limit, Egs. (56) and (57) are the same as
Eqgs. (7) and (8) with a=1/€ and the delay being 1/ \5 in-
stead of 1. From Proposition 1, we get the same expressions
for a and B as given in Egs. (52) and (53).

Thus, all cases (m,3),m=1, 2, 3 give the same solutions given
by Egs. (52) and (53). [ |

Remark 5. All three cases (m,3) lead to the same solution set. A
finer analysis of small terms might tell them apart. Note also that
these solutions rest on 8> 1, which implies “large” roots (though
not larger than that allowed by Remark 4). As will be seen in
numerics, all but a small number of roots are in fact captured
accurately.

Remark 6. In the above, roots in different magnitude regimes
were captured by different scalings of the nominally small/large
expansion terms. Equations (52) and (53) apply for N somewhat
large, but not larger than e 2*¥2), Moreover, there € itself is small.
Elsewhere, we have held N fixed as e— 0. Below, to obtain cor-
rection terms to the leading ordgr solutions, we set e=A/N!=1\2,
where A=0(1) since N< e @2 However, now A will be held
constant while we consider asymptotics for large N. These differ-
ent scalings are motivated by mathematical convenience alone,
always keeping in mind that we are finally interested in some
finite nonzero values of € and N, and it matters little how we get
there. In final justification of these ideas, numerics and approxi-
mations will match below.

For finding a correction term, we first scale € as mentioned in
Remgrk 6, then sul)stitute B=(2N+1/ 2)77V5+ By and «
=—\2In[e(2N+1/2)7\2]+«; in Egs. (39) and (40), expand in a
Taylor series about ;= =0 until first order, solve for a; and B,
retain the largest power of N (a key step in simplifying very long
expressions), and reinsert A=eN'""\2 to finally get
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21930271+ 2 62 cos[ (2N + 1/2)m\2]

B

4N 4 232 @22 22N 4 9202+ 202 sin[ (2N + 1/2) 2]

21+3/\57Tl+\56\‘§a sin((2N+ 1/2),”.\5) + 23\5772\562\‘5a2N\‘§—1

ay

Figure 6 shows the converged roots obtained from Newton-
Raphson iterations, each starting from a different initial point on a
large, uniform grid (exhaustive search); as well as the above ana-
Iytical estimates. Agreement is good except for a single root near
the origin.

7 Conclusions

We have obtained asymptotic approximations for the roots of
the characteristic equations of some linear DDEs with constant
coefficients. The term with the largest delay dominates in the
asymptotic expansions for the large roots. A few smaller roots
obtained using a Padé approximant can complement these
asymptotic expressions to give all the characteristic roots of a
DDE. However, if a very large coefficient is associated with a
term with a smaller delay (equivalently, the term with the largest
delay has a small coefficient), the large root asymptotics are useful
only for extremely large roots. For such cases, determining the
remaining roots using the Padé approximant is impractical and
alternative asymptotic expansions have been developed. This
study provides practical insight into the location of characteristic
roots of DDEs on the complex plane, and may be useful for fur-
ther theoretical studies as well.

Table 2 First six roots of Eq. (5) for a=1

- 4772N(l—\‘§) + 23\“562\5772\5a2N(\‘5—1) + 22+3/\5,n.1+\‘56\5a sin[(2N+ 1/2) WV’E] :

No. Padé approximant Newton-Raphson
1 —0.3181+1.3372i —0.3181+1.3372i
2 —2.0623+7.5886i —2.0623+7.5886i
3 —2.6532+13.9492i —2.6532+13.9492i
4 —3.0202+20.2465i -3.0202+20.2725i
5 —3.2878+26.5805i —-3.2878+26.58051
6 —3.4997+32.8805i —-3.4985+32.8807i

Table 3 First six roots of Eq. (4) for p=2,4=0.1
No. Padé approximant Newton-Raphson
1 —0.44008 —0.44008
2 —0.5762+2.4326i —0.5762+2.4326i
3 -3.7516+8.5961i -3.7516+8.5961i
4 —4.8189+15.095i —4.8190+15.095i
5 —5.4984+21.4961i —5.4984+21.4962i
6 —6.0014+27.8552i —-6.0014+27.8553i
Table 4 First six roots of Eq. (19) for a;=a,=az;=a,=1
No. Padé approximant Newton-Raphson
1 —0.1639+2.4749i —0.1639+2.4749i
2 —2.3946+8.2369i —2.3946+8.2369i
3 —2.8736+13.6232i —2.8736+13.6232i
4 —2.6442+20.2466i —2.6442+20.2466i
5 —-3.2404+27.0141i —-3.2404+27.0141i
6 —3.8715+32.8327i —3.8703+32.8338i
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Appendix: Smaller Roots

We use MAPLE, to find Padé approximants (as in [24,25]) to
obtain the smaller roots of the characteristic equations of the
DDEs. MAPLE does both symbolic algebra and arbitrary-precision
floating point arithmetic. To see the issues involved, consider

p- \2e7— 320, (A1)

Expanding in a Taylor series, we obtain
= 1 1 1
—1-\2+ (\’E+ 1 +’—§>p— (—r+—)p2+"'
v

Retaining terms up to p'®, we obtain the Padé approximant of
order (5,5). We seek the zeroes of this approximant. The numera-
tor is of the form =;_ycp¥, where ¢ is

6 688 184 704 014 240 — 1 634 855 556 025 440\%

+2 840 749 923 049 92042 — 3 855 543 089 257 440 \"E,
(A2)

and the other coefficients are comparably lengthy. The first few
roots of the numerator polynomial give good approximations to
the first few roots of Eq. (A1). However, the accuracy of the Padé
roots increase with the digits of precision used in the floating
point arithmetic. Results for the smallest root of Eq. (A1), which
is 1.044 643 69, are given in Table 1.

In practice, to find several roots of a DDE, high order Padé
approximants need to be used. The numerator polynomial then
involves long/large coefficients. We therefore numerically evalu-
ate the coefficients of the Taylor series at the start, before Padé
approximants are calculated. Moreover, many floating point digits
are needed for accurate results.

For the three examples studied in this paper, we used 650 digits
of precision (numerical inaccuracies were observed with our pre-
vious choice of 540 digits; no optimization was done on number
of digits) and took a Padé approximant of order either (21, 21) or
(22, 22) depending on the number of real roots obtained. Results,
in Tables 2—4, show good agreement.
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A Representation of Anisotropic
Creep Damage in Fiber
Reinforced Composites

A creep damage model is presented that allows for anisotropic distributions of damage in
composite materials. An earlier model by the writers allowed for anisotropic damage
growth rate but, based on a scalar state variable, failed to account for anisotropic
distributions of damage. A vectorial state variable is introduced that allows a represen-
tation of anisotropic damage distribution. As in earlier work, a fundamental assumption
is that the principally damaging stress components are tensile traction and longitudinal
shear at the fiber/matrix interface. Application of the creep damage model is made to
calculations involving homogenously stressed composite elements under transverse ten-
sile and longitudinal shear stress and to cross plied thin-walled tubes under tension/
torsion. Although the emphasis is phenomenological, with focus on a mathematical struc-
ture for representing anisotropic distributions of damage, a meaningful creep damage
model must rest on fundamental material science and microstructural examination. Veri-
fication experiments involving tension/torsion testing of thin-walled composite tubes to-

gether  with

detailed

microstructural — examination — are  discussed  and

outlined. [DOL: 10.1115/1.1875512]

1 Introduction

Grobstein [1] observes anisotropic damage growth at the fiber/
matrix interface of a W/Nb composite (MMC) under low stress
creep conditions, cf. Fig. 1(a). Grobstein’s results show a pro-
nounced directionality of damage that is evidently influenced
by the presence of transverse tensile stress at the fiber/matrix
interface.

The overall microstructural observations of Grobstein [1,2] are
summarized schematically in Fig. 1(b). With the passage of time
under transverse stress, interfacial defects (voids) appear to grow
and eventually coalesce, leading to increasing degradation of the
interface. The damage distribution at any stage is highly direc-
tional, the major damage accumulating on interfacial tangent
planes that lie essentially normal to the transverse stress direction.
It is conjectured that the physical mechanisms involved may in-
clude phenomena such as Kirkendall porosity [3] and the evolu-
tion of an interphase [1,2].

This description of Grobstein’s observations on the scale of
fibers (e.g., on the mesoscale) could similarly be made regarding
intergranular void growth in monolithic metallic alloys on the
microscale (cf. Hull and Rimmer [4], Chuang and Rice [5], Cocks
and Ashby [6]). Although the physical mechanisms on the two
scales are very different, the schematic picture, Fig. 1(b), may still
apply. The damage distribution is highly directional and the major
damage accumulates on interfacial planes (grain boundaries) that
lie essentially normal to the applied stress direction.

Intuition suggests that an analogous description may also hold
for polymer matrix composites (PMC), now on a molecular scale,
with Fig. 1(b) again applying qualitatively. Again, the scale and
physical mechanisms may be vastly different but mesoscopic fea-
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tures such as a highly anisotropic damage distribution and the
strong influence of transverse tensile stress (and longitudinal shear
stress) at the fiber/matrix interface may remain essentially the
same.

The objective of this research is to develop a phenomenologi-
cal, anisotropic creep damage model for fiber reinforced compos-
ites (MMC, PMC, etc.) that is consistent with the general features
of Fig. 1. The resulting model is an extension of Robinson et al.
[7,8] and Binienda et al. [9]. The earlier model accounts for an
anisotropic rate of damage growth but, resting on a scalar state
variable for damage, fails to account for an anisotropic distribu-
tion as characterized in Fig. 1. The present model allows for an
anisotropic distribution of damage through introduction of a vec-
torial state variable, i.e., a quantity that associates a scalar with
each direction in space.

Although the present emphasis is phenomenological, with focus
on a mathematical structure for representing anisotropic distribu-
tions of damage, it is recognized that a generally applicable dam-
age model for a specific composite (MMC, PMC, etc.) must also
rest on accepted material science and detailed microstructural ex-
amination. Macroscopic experiments supporting the present mod-
eling must ultimately be accompanied by microscopic evidence of
damage as Fig. 1(a).

Application of the creep damage model is made to homog-
enously stressed composite elements under transverse tensile and
longitudinal shear stress and to cross plied thin-walled tubes under
tension/torsion.

2 Anisotropic Creep Damage Distribution

Figure 2(a) is a schematic illustration of a (transversely isotro-
pic) composite element presumed to contain a large number of
fibers with orientation defined by the unit vector d=(1,0,0)-out
of page (cf. Fig. 2(b)). The element is stressed by a transverse
tensile stress o applied at time #=0, at which time the element is
undamaged. Figure 2(b) introduces a unit circle ¢ defined by the

unit vector 77 with 77-d=0. The direction 7z (or —71) designates the
normal to a tangent plane at the interface of a generic fiber in the
composite element (cf. Fig. 2(a)).

W(7z,t) represents the Kachanov [10] continuity at time 7 asso-
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Fig. 1 (a) Microphotograph of the fiber/matrix interface of
W/Nb composite [2]; shows creep damage and nominal stress
direction. (b) Schematic diagram of creep damage progression
observed in [2].

ciated with the interfacial tangent plane whose normal is 7.
Kachanov introduces the concept of actual stress in the context of
isotropic damage, i.e., o,=0/W, and asserts that the rate of dam-
age growth is determined principally by the level of the actual
stress. Here, the actual stress is directional o(i7,1)=0/WV(i1,1)

Fig. 2 (a) Transversely isotropic composite element; fiber di-
rection out of page. Unit vector n denotes normal to interfacial
tangent planes at fiber/matrix interface. (b) Definition of (1,2,3)
coordinates. Unit circle ¢ (dashed) defined by n. Kachanov
continuity distribution ¥(n,0) mapped onto unit circle ¢. Un-
damaged W¥=1.

Journal of Applied Mechanics

(v}

Fig. 3 (a) Composite element showing directional damage—
normal to stress direction. (b) Continuity distribution (solid
curve) in damaged state W(n,f) mapped onto unit circle.

differing on interfacial tangent planes. W(7z,7)=1 implies full con-
tinuity (no damage); W(7,7)=0 indicates total loss of load carry-
ing capacity across the plane with normal 7. The distribution of
W(7,t) can be mapped onto the unit circle ¢. The distribution in
Fig. 2(b) represents the undamaged state (¢=0) while that in Fig.
3(b) represents a damaged state at >0 biased by the presence of
the transverse stress o.

Onat [11,12] and Onat and Leckie [13] represent anisotropic
damage distributions using expansions of irreducible tensors.
They map the distribution at a material element onto the unit
sphere (cf. spherical harmonics). Their representation is coordi-
nate frame indifferent and compatible with continuum theory.

Guided by Onat and Leckie, we formulate an analogous tenso-
rial expansion of W(7z,7) that reflects the inherent transverse isot-
ropy of a composite element (Fig. 2(a)). Our model amounts to a
reduction from spherical to cylindrical coordinates, i.e., from
mapping the damage distribution on the unit sphere as in [13] to
mapping on the unit circle ¢ (Fig. 2(b)). The formulation remains
frame independent in the plane of transverse isotropy with the
local fiber direction aligned in the 1 coordinate direction.

We propose the expansion:

W(i1,1) = o(0) + Y (Of (1) + (O f i) + -+ 0,jk,1=1,2,3

(1)

in which the usual summation convention is used. The set of func-
tions 1,f;j(71),fiji(71),... are orthogonal basis functions and
o), (1), (1), are the Fourier coefficients. As W(7,1)
=W(-n,t), the basis functions involve only even rank tensors,
they are defined as:

= 1
fifm) =nin; = 56;
— 1
fijkl(n) =nminnn, — g(aijnk”l + Sy + Synny + Synny + Sy
1
+ Onin) + 55(8; 0 + Sy + 5;04) (2)

The basis functions are traceless, i.e., f;;=0, f;;;=0... and have
thel (s)ymmetry properties fi;=fii; fiju=frij=fijw=Fjixs; Also, &;

=lo 1
The Fourier coefficients are given by

(1) = Lf W (7, t)dn
2 c
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1
(1) = ;f W (1) f;(m)di
c

1
(1) = ;TJ W (i, 0)f(n)di
c

Now we adopt a definite coordinate system 1,2,3 as in Fig. 2(b)
with the fiber direction d=(1,0,0) along the 1 direction. The co-
ordinate directions 2,3 define the plane of transverse isotropy; we
choose 7(6)=(0,cos 6,sin §). With these definitions, the expan-
sion (1) and the basis functions (2) reduce to linear combinations
of trigonometric functions involving even multiples of 6. More-
over, it is readily shown that (1)—(3) reduce to a standard Fourier
series representation of W(7(6),t) over —w< #< 7. Thus

W (60,1) = th,(1) + (1) cos 20+ ¢hrg(t)sin 260 + iy (t)cos 46
+ lﬂ4s(t)sin 40+ s (4)

with the Fourier coefficients given by

bo(t) = —— f W(6.0d6
27 )

r(t) = lf W (6,1)cos20d6 (1) = lf W(6,t)sin 26d 6
T x T n
(5)
Iuc(t) = lf W (0,1)cos 460d0  ifuq(t) = lf W(6,1)sin 46d0
T & L

Although the frame indifferent representation (1)—(3) is gener-
ally applicable, we adopt the simple Fourier series form (4) and
(5) in the remaining development and in subsequent applications.

3 Flow and Damage Evolutionary Laws

The governing equations are taken from Robinson et al.
[7,8,14], Binienda et al. [9] and [15] with appropriate modifica-
tions. Thus,

ﬂzgq)p—lgll (6)
& 2 oo Py

V(h,r)=—A 7
(0.0 == )

&,; is the creep deformation rate, ® and I';; are as defined in [9].
o, is a reference stress, €,, p, A, v, and m are material constants
and A is the isochronous damage function (defined below).

Note that the coupling in (6) and (7) is through a scalar i,
which from the first of (5) is seen to represent the average of
W(7(6),t) over the unit circle c. This is consistent with the ex-
perimental results of Trampczynski et al. [17], directed to aniso-
tropic deformation and failure of metals, that suggest creep rate
may be more dependent on a measure of total damage (or, for
example, its average i, over c¢), than on its detailed directional
distribution. Of course, justification for this choice regarding
the composites of interest here ultimately requires additional
experimentation.

If only the first term i, is retained in the expansion (4) then (6)
and (7) are identical to Egs. (2) and (3) in [9]. Reduction to full
isotropy reduces (6) and (7) to the “®—A” forms introduced by
Leckie and Hayhurst [18] as a multiaxial generalization of the
Rabotnov/Kachanov equations of continuum damage mechanics
(CDM), cf. Rabotnov [19].

The isochronous damage function A is taken as

486 / Vol. 72, JULY 2005

A(N,S), where N(6) =(o;n;(6)n,(6)) and S(6) =|o;n;(6)d}|
(®)

N in (8) represents the tensile traction acting on an interfacial
plane with normal 7; S represents the longitudinal shear acting on

the plane of normal 7 and in the direction of d (or —d). As in
earlier work, in the absence of a complete experimental definition
of A(N,S) we adopt, for simplicity, the linear form

A(N,S) = L(N+ as) )
0-0
where « is an additional material constant.

Thermodynamic constraints ensuring dissipativity in a class of
evolutionary laws including (6) and (7) are discussed in by Onat
and Leckie in [11,13]. Equations (6) and (7) are identifiable as
“Q)-forms” in the thermodynamic formalism of [11,13] (P relates
to a dissipation potential }). Conditions for thermodynamic dis-
sipativity are that ® (or () is non-negative and ®=const. (Q
=const.) are convex, nested surfaces enclosing the origin of state
space. These conditions are seen to be met in Eq. (5) of [9],
defining ®. In addition to an accompanying discussion in [9], a
related discussion on thermodynamic dissipativity is given in [14].

The distribution of continuity W (72(6),t) of a composite element
evolves in time. Its rate of change is obtained by differentiating
(4) as,

W(0,1) = i, (1) + tr(1)cos 20+ ghg(1)sin 20+ gy (r)cos 40

+ Uys(1)sin 40+ g (1)cos 60+ Pgs(1)sin 66+ -+ -
(10)
where, looking ahead to applications, we have extended the ex-
pansion to include terms in 66.

Differentiating (5) and making use of the damage evolutionary
law (7), we write

o =—2 [ A
Yolt) = 2w ) _W(6.1)
el == A 26d6
A=) wen ©°
() =~ 2 TA in 2646
V== ) e
. AT A
=-= 40d6 11
thyc(t) Wf_ﬁ‘l’”’(é’,t) cos (1D
() =2 TA o aae
Ps==2 ) wron "
ROE AfT_ar 60d6
Vo)== ] e
0] AT _a in 66d6
=—— 1n
SO=TT ) wen

Integration of (10) and (11) over the unit circle ¢ and time 7 yields
the current continuity distribution W (72(6),7). In many structural
applications the stress components are referred to a global coor-
dinate system; these can be transformed readily to the local fiber
coordinates as illustrated in the following applications.
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Fig. 4 Damage of composite element under transverse ten-
sion. (a) Undamaged state (solid curve) ¥(n,0)=1 at t=0. (b)
Partial damage (solid curve) t>0. (¢) Continuity distribution
(solid curve) W (A, t) at failure t=1r. (d) i, vs t/tr (€) e/ eryte Vs
t/tr showing acceleration of creep rate (solid curve).

4 Applications

We now apply (4)—(11) in some simple problems. Integration is
accomplished using simple numerical techniques. The quadratures
involved in (11) make use of standard procedures built into Math-
CAD 2001; the time integration uses a fourth order Runge—Kutta
method also available in MathCAD 2001. The expansions (4) and
(10) include terms through 66. Obviously, additional terms and
more sophisticated numerical techniques can be used to achieve
increased accuracy.

4.1 Composite Element Under Transverse Tension. First,
we consider damage evolution under constant transverse stress. In
the coordinates of Fig. 2(b) the stress components are 0,=0a, (the
reference stress) with o=033=0,=03=023=0. Using (8) we
have

N(6) = {0ypnyn,) = 0, cos*(6) and S(6) =0 (12)
From (9) the isochronous damage function A is
A(6) = cos*(6) (13)

For the sake of this and subsequent calculations we chose the
following values of the material parameters in the flow law (6)
and damage evolutionary law (7): A=1, v=6, m=4, and p=6.5.
These values are chosen for convenience and to match those de-
termined experimentally for a model PMC in [8,9].

The results are shown in Fig. 4. Figure 4(a) depicts the undam-
aged state at /=0 with the continuity distribution W=1; Fig. 4(b)
shows partial damage at a later time >0 and Fig. 4(c) is the
distribution at =f; when the interfacial tangent planes normal to
the loading direction 2 have totally lost load carrying capacity (for
reference in subsequent calculations ¢z will generally designate
the time under constant tensile stress o, at which failure occurs on

Journal of Applied Mechanics
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Fig. 5 Isotropic damage evolution. (a) Undamaged state (solid
curve) ¥=1 at t=0. (b) Partial damage (solid curve) t>0. (c)
Isotropic failure (solid curve) =0 at t=1.

interfacial planes normal to the loading direction). Evidently from
Fig. 4(c), other interfacial tangent planes within the element retain
some carrying capacity.

The adoption of a general “failure” criterion for a composite
element damaged as in Fig. 4(c) is not straightforward. Correla-
tion with microstructural examination (cf. Fig. 1(a)) is critical and
needs to be made using appropriate experimental techniques,
however, a nondestructive, macroscopic failure criterion is needed
in structural applications. Such a criterion may be specific to a
given application, e.g., it may uniquely depend on the particular
loading history.

A common experimental failure criterion relies on the observed
acceleration of creep rate with damage. As indicated earlier, the
coupling of damage and creep rate in (6) is taken through i,
which from the first of (5) is seen to represent the average of
W (7(6),1) over the unit circle c. The time variation of ,(7) in this
application is plotted in Fig. 4(d); i,~0.83 at the failure time 7.
Note that ,(7) decreases rapidly as r— t.

The creep rate €=¢,, under a transverse tensile stress o=, is
calculated from the flow law (6) which reduces to a version of the
simple Norton/Bailey form
P

= (14)
|o]

g ‘ o
ALLS

as shown in [8]. &py is the creep rate for the undamaged material
(,=1) under the reference stress . Taking o=0, and p=6.5 in
(14) and integrating, we calculate the creep strain &(z) in 0<r
<tp. This is plotted nondimensionally as &/&rntr versus ¢/tg in
Fig. 4(e). We observe measurable acceleration of creep rate as
indicated by the ratio £(r7)/£(0) =~ 3.3. Thus, there is a theoretical
correlation relating an increase in creep rate (by about X3), a
corresponding decrease in i, (to =0.8), and a loss of load carry-
ing capacity normal to the loading direction (viz., Fig. 4(c)).
Whether this correlation exists in reality must be shown by ex-
periment (both macroscopic and microscopic). A precise definition
of failure is left for future study. Presently, we shall view elemen-
tal failure as the calculated loss of load carrying capacity across
any interfacial tangent plane.

In contrast to Fig. 4, Fig. 5 shows isotropic damage evolution as
modeled in Binienda et al. [9] or, equivalently, the present model
reduced to a single term ¢, in the expansion (4). Again, the stress

ETN
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Fig. 6 Damage under stepwise stress history. (a) Partially
damaged state (solid curve) at t=0.9t; just before change in
stress direction. (b) Fully damaged state (solid curve) at t
=~1.871r after final stage of stress o33=0,.

o, is applied along the 2 direction. Figure 5(a) is the undamaged
state at 1=0; Fig. 5(b) shows partial damage at t<<0 and Fig. 5(c)
is the fully damaged state at =t where all interfacial planes have
(isotropically) lost load carrying capacity, viz., ¥=0.

The response to stress histories that involve changes in direc-
tion are of particular interest. To address this we consider an ele-
ment first stressed along the 2 direction as in Fig. 4. At some later
time the stress direction is changed to the 3 direction. The latter
segment of the stress history requires a redefinition of the isoch-
ronous damage function A. Here, the stress components are 033
=0, with g11=0n= 0'1220']3:0'2320. Again, using (8) we have

N(6) ={o33n3n3) = 7, sin*(6) and S(6) =0 (15)
From (9) A is
A(0) = sin*(6) (16)

The damage evolution for the stepwise stress history is shown
in Fig. 6. Figure 6(a) shows the partially damaged state at ¢
=0.9t, i.e., the selected time when the directional change in stress
is made. Figure 6(b) shows the continuity distribution at ¢
~1.87tp, the calculated time (from r=0) when the interfacial
planes normal to the final loading direction 3 are exhausted of
carrying capacity. Recall that a constant stress o, applied mono-
directionally produces failure at #=t;. Thus, the total time to fail-
ure in the stepped history is about 87% greater than that under
constant o,. Of course, this is because changing the stress direc-
tion allows material on lesser damaged interfacial planes to sup-
port the load following the stress change.

Moreover, referring back to Fig. 5, it is evident that if the dam-
age distribution remained isotropic as in the Binienda et al. [9]
model, the failure time in this application would be z=7 regard-
less of any directional change in stress. Obviously, this is a con-
servative lifetime estimate as argued in Binienda et al. [9].

4.2 Composite Element Under Longitudinal Shear. A fun-
damental assumption in this research is that the damaging stress
components are the tensile traction and the longitudinal shear act-
ing at the fiber/matrix interface. The damage evolution under
transverse tensile stress was examined in the previous section.
Here, we examine the response under longitudinal shear stress.

Again, referring to the coordinate system of Fig. 2(b), we con-
sider the stress state: oj,=0, With 011=09=033=013=023=0.
From (8) we have

N(0)=0 and S(6) = |o,n,d;| = o,|cos 6
and from (9) A is

(17)

A(6) = alcos 6

In these calculations we take a=0.5.
Figure 7 shows the final continuity distribution under constant
longitudinal shear stress oj,=0,. The failure time, i.e., the time

(18)
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Fig. 7 Damage of composite element under longitudinal
shear. Continuity distribution Ww(n,t) at failure t=60t: (solid
curve).

for shear failure on interfacial planes normal to the 2 direction, is
calculated to be 1= 60ty (recall that ¢y is the failure time under
transverse tensile stress o). A comparison of Fig. 7 and Fig. 4(c)
shows only a slight difference in the shapes of the final continuity
distributions associated with longitudinal shear and transverse ten-
sion. The shapes reflect the respective damage functions (18) and
(13), but also depend on the choice of material parameters used in
the calculations.

Whereas the predicted shapes of the continuity distributions at
failure show only minor differences, the underlying physical fea-
tures of damage relating to longitudinal shear and transverse ten-
sile failure (cf. Fig. 1(a)) are likely to show major microstructural
differences. Again, it is essential that microstructural examination
be included as part of the experimental verification of the present
damage model.

Once again, it is of interest to consider a history of changing
stress. Figure 8 shows the results of first applying a shear stress
op=0, for t=50t, then changing to a transverse tensile stress
033=0,. Figure 8(a) shows the continuity distribution at =507,
following the application of the longitudinal shear stress. Figure
8(b) is the distribution after application of the tensile stress o33
=0, to failure, i.e., to the loss of carrying capacity on interfacial
planes normal to the 3 axis. This occurs in a time period t=ty
(following the change in stress), i.e., nearly unaffected by the

2 2

AT \ T X
7 \ ; Ve N\
/ \ ; / \

3 - ‘\ /’ 3 T g ;
\
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(a) (]

Fig. 8 Damage under stepwise longitudinal shear/transverse
tension. (a) Partial damage under longitudinal shear for t
=501 (solid curve). Distribution just before stress change to
033=0,. (b) Continuity distribution W(n,#) at failure (solid
curve) after o33=0, is applied for t=t..
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Fig. 9 Damage under stepwise longitudinal shear / transverse
tension. Continuity distribution W(n,{) at failure (solid curve)
after application of longitudinal shear for t=50tg, then o,,=0,
applied for t=0.151.

initial damage caused by longitudinal shear.

Figure 9 shows the result of a variation on the previous loading.
Here, after applying longitudinal shear for r=50¢, a tensile stress
0y =0, is applied. The continuity distribution is identical to Fig.
8(a) at t=50r5. The final distribution after exposure to oy, =0, is
shown in Fig. 9. In this case failure occurs in a time period ¢
~0.15t; following the stress change, only 15% of that corre-
sponding to Fig. 8(b). This illustrates the anisotropy induced, in
this case, by the initial longitudinal shear loading. What was origi-
nally a plane of isotropy (i.e., the 2-3 plane) becomes anisotropic.

4.3 Tension/Torsion of Thin Tubes With Two Families of
Fibers at +¢. Here we consider thin-walled tubes reinforced by
two distinct families of fibers designated by the unit vectors @ and

b in Fig. 10(a); the fibers make angles +¢ with the tube axis. We
conjecture that each fiber family incurs damage as in the case of a
single fiber family, i.e., by the presence of tensile stress and lon-
gitudinal shear stress normal and parallel to their respective fiber-
matrix interfaces.

The tube is loaded by an axial force F and a torque T generating
the state of stress

S
9
=)

S
I
N
=)
o

(19)

ij =

o
(=)
(=)

at a typical wall element. The components (19) refer to the coor-
dinate system (1,2,3) in Fig. 10(a).

We adopt an additional fiber related coordinate system
(17,27,3") as in Fig. 10(b) that is formed by rotation of +¢ about
the 3 axis. The 1’ axis coincides with the fiber direction; it aligns
with the a fibers under rotation ¢ and with the b fibers under
rotation —¢. The stress components referred to the (1',2',3")
system are

Journal of Applied Mechanics

(©)

Fig. 10 Thin tube under tension/torsion reinforced with two

fiber families 4 and b at +¢. (a) Definition of coordinate axes
(1,2,3). (b) Definition of fiber coordinate axes (1',2',3’). Fiber
direction 1'. (¢) Unit circle ¢ viewing back along 1’ direction.

ocos’ p+ Tsin2¢p - g sin2¢+ 7cos2¢ 0

y= —gsin2¢+7'0032gb osin? p-7sin2¢ 0

0 0 0
(20)

Viewing back along the 1’ axis (the fiber direction) we observe
the unit circle ¢ in Fig. 10(c). Its defining unit vector 7 is

71(6) = (0,cos 6,sin 6)

in (1',2',3") components.
Returning to (8), we have

N(6,p) ={oy1ymyny) = {0 sin® ¢ — 7sin 2p)cos’ 0

(21)

(22)

and

|cos 6] (23)

ag
S(6.¢) =ormyd,| = ’— 5 sin 2¢+ 708 2¢

where, again, all components are referred to the (1’,2",3") sys-
tem. Note that in (23), d; =a,=1 for +¢ and d;,=b,=1 for
—¢. The damage function A(N,S) is obtained by introducing (22)
and (23) into (9), thus

L

A6, 9) [(o'sinz¢—7's1112<;§)cos2 0+« —gsin2q§

o

+7C0s2¢ (24)

|cos 0|]

(24) holds independently for each fiber family; @ with +¢ and b
with —¢.

In applications, the independent continuity distributions
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afibers

Fig. 11 Continuity distributions for both fiber families at =1
(solid curves). Positive twist with 7=,

W ,(0,1) and V5(6,1) evolve according to (4)—(11) with (24). Each
distribution has a damage evolutionary equation identical to (7).
Referring to (4), the lead terms in each of the expansions W,(0,1)
and Wp(0,1) are ¢,4(t) and (7). From (5) these represent the
current averages of the distributions over their respective unit
circles ¢. For an arbitrary composite volume V, we consider the
volume average

*Po(r)=lv< f Poa(1)dV + f %B(t)dv)
Vi Vg

Applying (25) to a homogeneous (continuum) element in which
Va=Vp=V/2, we have

Wo(1) = 5(hoa0) + Pop(0)) (26)

The average (26) replaces i,(¢) as the coupling variable in a flow
law analogous to (6) for the two-fiber-family representation, cf.,
Robinson [16].

We are now in a position to calculate the damage response of
thin-walled tubes with +¢ fibers to a general tension/torsion load-
ing using (4)—(11) with (24). However, we shall consider only a
special case that relates to experiments proposed in [9]. We con-
sider a tube with fiber directions ¢=+7/4 (+45°) under forward
and reverse torsional (shear) loading, viz., (o, 7)=(0, £ 7).

First, we consider a tube subjected to positive torque 7 produc-
ing a state of shear stress 7=0,=0,; With 0;=0y=033=03
=0,3=0. These are components relative to the (1,2,3) axes in Fig.
10(a). The damage distributions at failure (r=1;) are calculated
using (4)—(11) with (24) and are shown in Fig. 11 for each of the
fiber families. The a fibers remain undamaged while the b fibers
show a loss of load carrying capacity on interfacial planes normal
to their associated 2’ direction. The failure time ¢ is consistent

(25)

with earlier results in that the b fibers experience a transverse
tensile traction o,; the a fibers have zero transverse traction. As
identified earlier, the coupling term in the flow law for two fami-

lies of fibers (cf. Robinson [16]) is ¥, (¢) in (26). The time varia-
tion of W,(¢) in this application is shown as the dotted curve in

Fig. 12; it is seen that ¥ ,~0.91 at t=t;.

Next we consider a stress history where a tube is subjected to a
negative torque —7 prior to the application of positive torque T as
considered above. The state of shear stress under the negative
twist is 7=—0,. This is held for a selected time r=0.9t; after
which the shear stress is changed to 7=0,. The partial damage
distributions at the stress change (1=0.97z) for both fiber families

are shown in Fig. 13; the b fibers are yet undamaged. Following
the stress change, failure is calculated to occur at 7= 1.9t when

the load carrying capacity of the b fiber family becomes exhausted
across planes normal to their 2’ direction. The final continuity
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Fig. 12 \I_fo versus t/tz. Dotted curve relates to continuity dis-
tributions of Fig. 11; solid curve relates to continuity distribu-
tions of Fig. 14.

distributions at failure (=~ 1.9¢;) are given in Fig. 14. Whereas the

b family has failed, the @ fibers remain partially damaged as in
Fig. 13.
The time variation of the deformation/damage coupling quan-

tity W,(r) is shown in Fig. 12 (solid curve). Its value is W,
~0.95 at the stress change (r=0.9¢z) and ¥, ~0.86 at failure (¢

We are interested in the shear strain in the tube over 0=t
< 1.9¢. In particular, our interest is in the calculated acceleration

afibers b fibers

Fig. 13 Damage of tube under reversed twist history. Continu-
ity distributions for both fiber families (solid curves) at t
=0.91¢, under negative twist (7=-0,) just prior to twist reversal.

a fiber b fiber

Fig. 14 Damage of tube under reversed twist history. Continu-

ity distributions for both fiber families (solid curves) at failure,
after final positive twist (7=0,). Failure time is t=1.9%..
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Fig. 15 Damage of tube under reversed twist history. Creep
strain history y/y,tr versus t/tg (solid curve) showing creep
rate acceleration approaching t=1.9t.

of creep rate accompanying the approach of failure at 7= 1.9¢;. An
equation analogous to (14) is derived in [16] for calculating the
shear strain rate () in a composite with two fiber families. Thus,

v T T

7" \I_jo(t)o-o H

where 7, denotes the shear rate for the undamaged (+45 deg two-

27)

family) composite element with ¥ =1 and 7=+ o,

Taking 7=+ 0, and p=6.5, (27) is integrated to determine y(r)
in 0=<t=<1.9¢. This is plotted nondimensionally in Fig. 15 as
vl yotr versus t/tp. Negative shear strain accumulates prior to the
stress change at 1=0.9¢, it then reverses and accelerates as failure
approaches. The extent of acceleration is characterized by the ra-
tio ¥(1.917)/ ¥(0.915) =2.4.

Here again, a hypothetical correlation exists relating the accel-

eration of creep rate (by a factor of 2-3), a decrease of ¥, (to
~0.86) and a total loss of carrying capacity on interfacial planes
normal to the loading direction. As indicated earlier, verification
of this correlation in a real composite material needs to be estab-
lished by experiment. The application considered here involving
reversed twisting of a tubular specimen having fibers at +45 deg
provides a useful vehicle for experimental verification.

Consider experiments of this kind generating a shear strain-time
response as in Fig. 15. Loading continues until the creep rate is
observed to increase by =~2-3 times. The “failure” time is noted
and the specimen is unloaded, dissected and examined microstruc-

turally. The proposed model infers that the b fibers should appear
critically damaged (cf. Fig. 1(a)) on interfacial planes normal to
their associated 2’ (in plane) direction. The a fibers are expected
to show lesser damage, cf. Fig. 14. A sequence of tests of this
kind, involving various degrees of creep rate acceleration, other
stress histories, etc., serve as a comprehensive assessment of the
present model.

5 Summary and Conclusions

A phenomenological creep damage model is formulated that
allows for an anisotropic distribution of damage in composite ma-
terials having long or continuous fiber reinforcement. Faithful rep-
resentation of anisotropic damage distribution is important for ac-
curately predicting stress redistribution in damaging structures
and thereby accurately estimating lifetime. An earlier constitutive
model by the writers allowed for anisotropic damage growth rate
but, resting on a scalar damage state variable, failed to account for
anisotropic distributions of damage. Here, in effect, a vectorial

Journal of Applied Mechanics

state variable is introduced that permits a representation of aniso-
tropic damage distribution. As in earlier work, a fundamental as-
sumption is that the principally damaging stress components are
tensile traction and longitudinal shear at the fiber/matrix interface.

This research is guided by the work of Onat [11,12] and Onat
and Leckie [13] in which expansions of irreducible tensors are
used to map anisotropic damage distributions on a unit sphere.
Here, accounting for material symmetry of the composite and the
assumed critical stress dependence, we map anisotropic damage
onto a unit circle normal to the local fiber direction (or directions).
The reduced tensorial expansion is shown to be equivalent to an
ordinary Fourier series expansion over the unit circle.

Although the present emphasis is phenomenological, with focus
on a mathematical structure for representing anisotropic distribu-
tions of damage, any creep damage model must rest on fundamen-
tal material science and microstructural examination. Macroscopic
experiments supporting the present modeling need to be accom-
panied by microscopic evidence of damage, e.g., as in Fig. 1(a).
Combined micro/macroscopic verification experiments are de-
scribed in the previous section; they are based on tension/torsion
testing of thin-walled composite tubes with fiber reinforcement at
+45 deg to the tube axis. Related experiments were supported by
the National Science Foundation under Grant No. 0001634 and
published in [8,9]. These include tests for defining the form and
functional dependency of the isochronous damage function (8).
Additional experiments involving nonproportional stressing as in
[17] may be required to justify coupling in (6) and (7) being based
solely on the leading scalar term ¢, in the expansion (1) (or (4)).
Experiments of this kind are under definition by the authors. If
experimental verification of a scalar coupling in (6) and (7) were
not established, the same general representation holds but at the
expense of considerable complexity.

The specification of a general “failure” criterion for an aniso-
tropically damaged composite element is not straightforward. In
terms of model development and verification, correlation with
micro-structural examination is critical, however, a macroscopic
failure criterion is needed in structural applications, e.g., should
structural failure be based on total loss of load carrying capacity
in any orientation, on some average measure over the unit circle c,
on detection or calculation of accelerated creep rate, etc.? This
topic is left for future study.
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1 Introduction

Fourier’s law of heat conduction, which has been used to drive
the heat conduction equation in classical unsteady heat transfer
problems, results in a parabolic equation for temperature filed and
an infinite speed of heat propagation, thus violating the principle
of causality. Maxwell [1] derived the generalization of Fourier’s
heat law for the dynamical theory of gases. Maxwell’s heat flux
equation contains a term proportional to the time derivative of the
heat flux vector multiplied by a constant relaxation time 7. Since 7
had a very small magnitude in Maxwell’s work, he took it to be
zero. In justification he remarked, “The first term of this equation
may be neglected, as the rate of conduction will rapidly establish
itself. Ackerman et al. [2] established the second sound in solid
helium, which gave a finite speed of propagation of thermal
waves. Puri and Kythe [3] have studied the influence of general-
ized law of heat conduction, using the Maxwell-Cattaneo-Fox
(MCF) model, on Stokes’ first and second problems for Rivlin-
Ericksen fluids with nonclassical heat conduction. Kythe and Puri
[4] studied the unsteady magnetohydrodynamics (MHD) free-
convection flows on a porous plate with time-dependent heating in
a rotating medium. Puri and Kythe [5] have studied an unsteady
flow problem which deals with nonclassical heat conduction ef-
fects and the structure of waves in the Stokes’ second problem. In
the MCF model as developed by McTaggart and Lindsay [7], the
nonclassical constitutive equation for the heat-flux vector ¢q is
given by the Maxwell-Cattaneo equation in the form

T(‘?i—wiﬂj)=—‘1i—)(0;’ (1)
where w;; is the vorticity, y the thermal conductivity, ;= dq/ dt, 6
the temperature, and 7 the thermal relaxation time. Equation (1)
reduces to that of the Cattaneo model at w;;=0 and it becomes
Fourier’s law for 7=0 (see Joseph and Preziosi [8,9]). While there
are other good models to choose from, the Cattaneo law, as stated
in Joseph and Preziosi [8,9], has many desirable properties. For
example, the steady heat flow is induced by temperature gradients
and gives rise to finite speeds of propagation. The dimensionless
thermal relaxation time, defined as A=Cp, where C and p are the
Cattaneo and Prandtl numbers, respectively, exhibits a definite
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second problem of a micropolar fluid. The effects of the thermal relaxation time and the
structure wave on angular velocity, velocity field, and temperature are investigated. The
skin friction, the displacement thickness, and the rate of the heat transfer at the plate are
determined. [DOI: 10.1115/1.1875412]

influence on the structure of waves. It significantly modifies their
behavior. The number \ also appears in generalized thermoelas-
ticity [10] where it is defined as m and is shown to be of the order
1072. Again as noted in Puri and Jordan [11], the Cattaneo number
C may not be very small in astrophysical applications. For ex-
ample, C is of order 1072 in a low temperature hydrogen gas.
However, the thermal relaxation time A does not appreciably
change the magnitude of the temperature and velocity fields. Puri
and Jordan [6] studied some recent developments in the unsteady
flow of dipolar fluids with hyperbolic heat conduction. Eringen
[12] introduced the theory of micropolar fluids in which he ex-
plained some fundamental problems for future theoretical and ex-
perimental studies. These problems include: well-posedness basic
initial boundary value problems for micropolar fluid flows, right
choice of boundary data for microrotation field, comparison of
micropolar fluid flows with Navier-Stokes flows, new questions in
the theory of turbulence, and range of applicability of the model.
A lot has been done since in the frame of this broad project,
however, many important problems remain open. Peddieson and
McNitt [13] and Willson [14] have introduced the boundary layer
concept in such fluid. The study of flow and heat transfer for an
electrically conducting micropolar fluid past a porous plate under
the influence of a magnetic field has attracted the interest of many
investigators in view of its applications in many engineering prob-
lems such as magnetohydrodynamic, generator, plasma studies,
geothermal energy extractions, and the boundary layer control in
the field of aerodynamics Soundalgekar and Takhar [15]. Mi-
cropolar fluids are fluids with microstructure belonging to a class
of fluids with non-symmetrical stress tensor. Physically, they rep-
resent fluids consisting of randomly oriented particles suspended
in a viscous medium Lukaszewicz [16]. Eringin [12] formulated
the theory of micropolar fluids and derived constitutive laws for
fluids with microstructure. This theory included the effects of lo-
cal rotary inertia and couple stresses and expected to provide a
mathematical model for non-Newtonian behavior observed in cer-
tain manmade liquids and theologically complex fluids such as
liquid crystals, polymeric suspensions, and naturally occurring
liquids such as animal blood. Kim and Fedorov [17,18] studied
unsteady MHD micropolar flow and heat transfer over a vertical
porous moving plate with variable suction.

One can consider this article as both a generalization of re-
search of Puri and Kythe [5] and Puri and Jordan [19] to Stokes’
second problem for micropolar fluids and as an extension and
refinement of the work of Puri and Jordan [11]. Our motivation in
doing this work stems from the ever growing number of flow
temperature and or high heat flux applications of non-Newtonian
fluids in areas such as medical research, space exploration, and
low-temperature physics. Last, we must note that in the general
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case of thermoviscous fluids, particularly monoatomic gases, a
complicated mutual interaction between temperature and velocity
fields, particularly monoatomic (see Miiller and Ruggeri [20], pp.
1-61). Thus, because of the linear nature of the problem presented
here, this work should be considered as only a first approximation
to a more complex problem.

2 Mathematical Analysis

Consider the one-dimensional unsteady flow of a laminar, in-
compressible, micropolar fluid past a vertical flat plate in the xy
plane and occupy the space z>0, with the z axis in the vertical
direction. The plate initially at rest and at constant temperature 6.,
which is the free stream temperature is moved with a velocity
Uye'® in its own plane along the z axis, and its temperature is
subjected to a periodic heating of the form (6,,— 6.)e'®, where
0,,# 0., is some constant. The basic equations of continuity, mo-
mentum, angular momentum and energy governing such a flow,
subject to the Boussinesq approximation, are

vzi=0, (2)

pu; == P+ (m+ p)V20; = pl1 - a6 - 6,)1g8, + 2u,N ; + 113,

(3)
pi'N = yV’N', (4)
pe=—q;;+tydy. (5)

Where the vector v=(u,0,0) represents the velocity, p the density,
7" the microinertia density, N* the component of angular velocity
vector, vy the spin-gradient viscosity, x4 the dynamic viscosity, P
the pressure, ¢ the specific internal energy, « the coefficient of
thermal expansion, g the acceleration due to gravity, t;, the non-
Newtonian stress tensor, and d;;, the strain tensor.

The effect of microstructure is negligible in the neighborhood
of a rigid boundary since the suspended particles cannot get closer
than their radius to boundary (Ahmadi [21]). Thus in our study we
consider the only rotation is due to fluid shear as pointed in Eq.
(4).

Taking into account the geometry of the problem which results
in the disappearance of the dissipative terms and noting that #;
=0, Egs. (2)—(4) reduce to the following equation of motion:

u, = (v+ v,)u; +ga(0 - 6))+ 2v,N:, (6)
£ l £
N,=—N._. (7)
7

Equation (1), after substitution into Eq. (5), gives

pe,0 == q;,. (8)

Where e=c, 6 for the MCF model. If we drop the nonlinear terms
Tw;q; in Eq. (1) because 7 and w are small quantities, we get

Tq;i=—qi;— Xe,ii~ 9)

Which in one-dimensional form, after dropping the convective

terms (because these terms become automatically zero), leads to

0+ 6 =20,

pcp
Note that the term 7'0:; in Eq. (10) is necessary to ensure finite
speed of propagation. We shall use the nondimensional quantities.
e e 2
= 0* — 0(»)« s N)‘ = %
0, -6, v

(10)

R =y L
z ==z, u =Uyu, =1,
Uy U3

N.

(11)

Then the governing Egs. (6), (7), and (10) for the flow, angular
velocity and heat conduction, after suppressing the primes, be-
come
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u,=(1+Bu,+GO+2p6N.,, (12)
1
Ny==N,. (13)
n
Apb,+pb6,=0... (14)
Where G is the Grashof number and S viscosity ratio
vga 0*, -6, vpc TxU,
G=2" 20 (”3 0), p="r = Z( °,
U, X vpc,
U} 2
N=—"=C, 7= (15)
v 2+
The boundary conditions are
, . IN(,1) —Pu(0,1)
O,t - tu)t’ 0 O,t - lwt, - ,
u(0,)=e (0.1)=e P P
u(e,1)=0, 6(,1)=0, N(»,1)=0. (16)

To solve the nonlinear systems, (12)—(14) with the boundary con-
dition (16), We assume that

u(z,1) = U(z)e'™,
0(z,1) = O(z)e™”,

N(z,1) = N(z)e'™". (17)

If we substitute by Eq. (17) in Egs. (12)—(14) and the boundary
conditions (16) we get.

(I1+PU"-i0U=-GO -2BN’, (18)
N'—iongN=0, (19)
0"+ \pw? —iwp)® =0. (20)
The boundary conditions are
Uu)=1, ©6(0)=1, N'(0)=-U"(0),
U(®)=0, ©O(2)=0, N(*)=0. 21)
We get the solution under modified boundary conditions as
U(Z) =M (Gl + iGZ)(e—mz _ e—(r1+ir2)z)
= (Sy +iSy)(e™ = ™), (22)
+i G
Nz = ——— (23)
2(1-BINw/(1+ B)
O(z) = e nitin)e, (24)
where
® 1)
— 1 1 —7 — 1 [ _’
m=( +l)\/2(1 ) m;=( +z)\l2+,8
\/ (\"(1 +2\%0?) F 7\w>
Fip= oP\ ——mMmMM888 N
’ 2
G(\Pw? - io(75 - P))
Gl +iG2= 5 2 4 B 1 27>
1+ A\’ + (715 -p)°]
212+ +iG
Sy +iS, = 22+ Pw+iG) (25)
(1-po

From Eq. (23), we find that
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Re u(z,t) = e’z“mcos[wt — zVw/2(1 + Bl- e’“““’/z(”'g){(Gl
+8)cos[ wt — ZV'M] — (G, + Sy)sin[wt
_ ZV’M]} + e G, cos(wt — ryz) — Gysin(wt
= 12)]+ € EBLS cos[wr - 2wl (2 + )]
— Sysin[wr — 2\ o/(2 + B} (26)

In the classical case, for micropolar fluid (8# 0) the solutions for
both temperature and velocity fields can be obtained by taking A
=0 in Egs. (24) and (26), respectively. Then

0(z,l) — e—(l+t’)z\“‘M+iw17 (27)

u(z,0) =[e™™ = iGy(e™ — e7™%) — (S1 +iS2) (e — e7™%) [,
(28)
for G;=0 and G,=G/ Bw. Also in the classical case for Newtonian
fluid (B=0, p=1, and A=0) becomes a singular case and the so-

lution for the velocity in the this case for p=1 has to be obtained
directly in the form

(29)
2\2w

We notice that this is the same result as obtained by Puri and
Kythe [5]. The velocity field based on Fourier’s heat law is ob-
tained by setting B=1 in the above expressions. However, taking
B=1, is a singular case. The directly obtained singular solution for
the velocity field is given by

u=(z,0) = {7 = (G3 + iG,) (e — e~ U1H12)7) _ (8, 4 iS,)z(e7
_ efm3z)}efiwt. (30)
Where

1 — 2
my = 5(1 +ilNo, my=(1+i)\w/3,

GANPw* +iGw(p —0.5)

Gy +iGy =
3T 2(N2prat + w*(p - 0.5)%)

(w—G2)+i(w+ G/2)
4\"“‘(»/3

S3 + lS4 =
For the singular case of p=1, A=0, 8=1Reu it is given by

Reu= exp(— %\Z){(l -G;— zS3)cos(wt - %\Z) + (G,

+ zS4)sin(a)t - %\;) } + exp(— zr)(Gscos(wt — zr)

— Gysin(wt — zr,) + exp(— z\e"m){zS_gcos(a)t - z\f'm)

— z8,sin(wt — z\e“’w_/3)}. (31)
The standard definition of the displacement thickness &" is
5*=J (1 -i)dz, (32)
Uy

where Uy is the free stream velocity. In our case, the plate is
moving while the free stream is stationary. Therefore, the formula
(32) is modified, and in the nondimensional form is given by

|5*|=f udz,
0

this formula can also be obtained by imparting to the entire sys-
tem a negative velocity equal to the velocity of the plate. Using

(33)
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the formula (33) the absolute value of the displacement thickness

is given by
B 1 . 1 1 .
|5|= _—(G1+1G2) - = i —(S1+lS2)
m m  (ry+iry)
L)
nmy

This thickness, in classical case, is |8"|=|1/m—(iw/(1-8))(1/m
—1/m,)| in the absence of heat transfer. But in the singular case of
A=0, p=1, and B=0 it is given by

1
m

for all p,A #0, and B# 0. (34)

* 1 9,5 2
|6°] = —=\1+GY4a?,

(35)
Vo
and for the singular case of A=0, p=1, B=1 is given by
1 1 1 1 1
8=|—-(G5+G (—-—)— Sy +iS (———) )
19 m, (G5 +Ga) my  (ry+iry) (S5 +i54) my  m3
(36)

We can now calculate the skin-friction and heat transfer coeffi-
cients in terms of the Nusselt number at the wall of the plate:

T, = Z_u ={—m+ (G, +iGy)[m — (r; +ir) ]+ (s; + isy)(m
7| .=
—ml)}exp(iot), (37)
Nuy'= - 96 =(ry +iryexpliot). (38)
Jz 2=0

3 Discussion

The oscillatory nature of the flow generates waves in the both
temperatures, velocity fields and the angular velocity. Although
these waves decay rapidly, it is of some interest to understand
their structure.

3.1 Wave Structure and Thermal Waves. In the temperature
field the behavior of the thermal waves can be obtained from the
solution (24). From this solution we can conclude that the thermal
waves exhibit one type of dispersive wave trains with a wave
front at z=wt/r,, w is the angular frequency, r; the attenuation
coefficient, and r; is the wave number, then phase velocity V is
defined as

®
Vy=wlry= \/ , (39)
¢ g 2p(V1 + N2 w? + \w)
from Eq. (25), one can solve for w in terms of r, and get
rErZ
N
2 (40)

W= —
\p(p +4Nr3)

The group velocity is the velocity with which energy propagates
and is defined by

do 2\20(1 + N2w?)
dr, \*‘Z()x&)+ V14 \2w?)¥?

V, <V, = Normal dispersion, V,

>V, = Anomalous dispersion,

(41)

Normal dispersion means that waves appear to emanate from the
front and disappear in the rear. Anomalous dispersion means that
waves appear to emanate from the rear and disappear in the front.

V, =V, = There is no dispersion
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No dispersion means that there is no relative motion of the group
and the carrier occurs and the group travels without distorsion of
the wave shape. The above Eq. (41) for N—0 reduces V,

—2\2w/ w/p. In the case when the product Aw is large, we find that
r = \p/w/2)\ r=wy )\p In this case, then, the velocity phase is

3.2 Wave Structure of Velocity Field. The solution (22) ex-
hibits three types of dispersive progressive wave trains: one has a
wave front at z=1\2(1+ ), which corresponds to the classical
Stokes waves of a micropolar fluid the difference between the
classical and the present case is that the layer at distance z from

Vg=1/ \)\p at N\ is very small then, the speed phase of thermal . .
waves is huge and this wave decay very fast. the plate oscillates with phase lag of z\/z(1 B -V, where
|
(B-1)G[p(1+p)-1] 232 4_ 2 2
G,+S —— +2(1+ PR+ BG{p N - o1/(1+ B) -
tan W, = 2 2 148 ( B BGip [ B -pl} (42)

G +8 -1

For p=1, this reduces to the classical case [¥;=0 at B>+(G
+4w/2w)B-G/2w=0]. The second wave train at the phase lag
zr,—V,, where

G, \po(l+p8)’
In this case we note W,=0 when P(1+8)=1, f#—1. The third

. s e
wave train at z=f\w(2+p) and the phase lag of (zVw/2+p
—W3), where

tan ¥, = (43)

(44)

5
1

G
tan‘l’3=S —.
)

We note that from Eq (22), when B=0, the third wave train is

(B-1)Gw’p\ +2(1 + B2 + Bo(p*\? o’ -

@*(1/(1+B)=p))

omitted because in this case m; =m2=\5w/2‘

Equation (29) which describes the classical case in Newtonian
fluid (8=0, P=1, N=0), the above three waves trains coalesce
into one with a wave front at z= t\2w and a phase lag of
[(z/x2 ¢)/ w] for a fluid layer at a distance z from the plate,
where

Gz
Gz+2\20
which is the same result as obtained in [5].

For the special case, B=1 from Eq. (30) exhibits three types of
dispersive progressive wave trains, one wave train progresses with

the wave front at z=2\w and phase lag (z/2\Vw—¢;), where

tan ¢ = (45)

an gy = _GatSs 4G(p - 0.5) V3 + 2(w+ GI2)[(p - 0.5)%” + \2pw*] 6
an = = =
"T G+ S5 1 4Gp N3 +2(0 + GI2)[(p - 0.5)20* + Np2e*] - 8072[0.25 — p — p*(1 + N2e?)]
[
The second wave-train at z=wt/r, and the phase lag of [(zr, 2w+ G
—,)], where tan ¢ = oG (48)

=

tan¢2=ﬂ— (p— )

. 47

The third wave at z=t\e’3—w and the phase lag (Nw/3- ¢3), where

1.0

08

506
&

0.4

0.2

0.0 ——
[+ {1} 1 1.5 2 20 2

0.2

G

B=5  poi3s P50

0.4

Fig. 1 Behavior of Re u versus z for p=1, ®=1000, t=0.1, A
=0.005, G=5.0 and B=0, 5, 13.5 and 50
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3.3 Wave Structure of Angular Velocity Field. The angular
velocity fields consist of the one damped harmonic component.

The component has a wave front at z=7\/(2+ f)w, and phase lag
of (zy2w/(2+ B)— ) for a fluid layer at distance z from the plate,
where

1-B)+2G
tan ¢ = % (49)
G(1-p)-2Bw
The group velocity of this wave is given by
1
Vo= 77— (50)

2v’(2+,8)w,

w is very small, then the speed phase of the thermal waves is
huge, and this wave decays very fast.

3.4 Velocity Field. From Fig. 1 we can observe that as
increases the momentum boundary layer thickens/increases. Also,
as B increases the Re u increases.

The same trend can be observed in Fig. 2 for |u|. On the other
hand from this figure notice that as B increases, the peak velocity
decreases.

The effect of X on both Re u and |u| is found to be very small,
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Fig. 2 Behavior of |u| versus z for p=1, ©v=1000, {=0.1, A
=0.005, G=5.0 and B=0.5, 5, and 50

although it changes the character of the velocity field. Since A\
takes very small values, we have presented the graphs of Re u and
|u| in Figs. 3 and 4 for A=0.005, 0=10, G==5, and #=0.1. From
these figures we can notice that as G increases |u| decreases and
there is no change in the fluid boundary layer. Also, the peak
velocity decreases as G increases. For large w, the influence of
both N\ and G is negligible; as seen in Figs. 5 and 6.

The velocity field in Stokes’ second problem consists of three
components: one, corresponding to ™, defines the Stokes-
Rayleigh layer which is of the order O(1/\w), the second, corre-
sponding to e~U'1*"2) represents the thermal layer which is of the
order O(1/r;), and the third wave train, which is similar to e™™1%,
represents the angular momentum layer which is of the order
o(1/w!B).

In order to observe the effect of A on Re u we presented some
data in Tables 1 and 2, below. Thus, in Table 1, which is for G
=-5, it can be seen that an increase in A\ tends to decrease Re u up
to z=0.24 for an increase in A from 0.0 to 0.005, and increase it
thereafter. Again, Re u increases with respect to A up to z=0.2 for
N €[0.005,0.01]. This behavior is reversed for G=3, as is obvi-
ous from Table 2. The underlined data in Tables 1 and 2 are the

0.8

G=5

06

Re u

G=5
04

0.2

0.0

0.2

Fig. 3 Behavior of Re u versus z for p=1.0, »=10.0, {=0.1, A
=0.005, $=0.2, and G=%5
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Fig. 4 Behavior of |u| versus z for p=1, »=10.0, t=0.1, A
=0.005, $=0.2, and G==5
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Fig. 5 Behavior of Re u versus z for p=1.0, ®=1000.0, {=0.1,
A=0.005, 8=0.2, and G=+5

critical values of Re u with respect to \; at these values there is
reversal in response to an increase in A. By comparing our results
for micropolar fluid (8=0.2) in Tables 1 and 2 by Tables 1 and 2
of Puri and Kythe [5], which are for Newtonian fluid (8=0), we

1.2

1.0

=08
3

G=§,-5

0.6

04

0.2

0.0

0.0 0.1 0.2 0.3 0.4 z 0.5 0.6

Fig. 6 Behavior of |u| versus z for p=1, ®=1000, t=0.10, A
=0.005, $=0.2 and G==+5
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Table 1 Re u at t=0.1, 8=0.2, ®=10, G=-5
A Z=0.0 Z=0.2 Z=0.21 7Z=0.22 Z=0.23 Z=0.24 Z=0.26 Z=0.27 Z=03
0.0 0.54030231 0.39969678 0.39029047 0.38083993 0.37136339 0.36187805 0.34294501 0.33352700 0.305 626 80
0.001 0.54030231 0.39967258 0.39026961 0.38082295 0.37135082 0.36187043 0.342948 88 0.333 53740 0.305 659 88
0.005 0.54030231 0.39961228 0.39022452 0.38079521 0.37134256 0.36188378 0.34301181 0.33362828 0.305 846 85
0.01 0.54030231 039961937 039025475 038085123 037142703 036199936 0.34319753 0.33385298 0.306 203 66
Table 2 Re u at t=0.1, 8=0.2, ®=10, G=5
A Z=0.0 Z=0.2 Z=0.21 Z=0.22 Z=0.23 Z=0.24 Z=0.26 Z=0.27 Z=03
0.0 0.54030231 0.66639457 0.663 14905 0.65923660 0.65468794 0.64953327 0.63752403 0.63072722 0.607 502 80
0.001 0.54030231 0.66641877 0.663 16990 0.65925358 0.65470051 0.64954089 0.63752017 0.63071682 0.607 469 73
0.005 0.54030231 0.66647907 0.66321499 0.65928133 0.65470878 0.64952754 0.63745723 0.63062594 0.607 282 76
0.01 0.54030231 0.66647199 0.663 18477 0.65922531 0.65462431 0.64941196 0.63727151 0.63040124 0.606 925 94
5 25
2.0
05 0.6 oj7
z G=5
= 1.5
& z
&
1.0 | G=5
0.5
20 0.0 e
) 1 2 z ]
Fig. 7 Behavior of Re N versus z for p=1, ®=1000, t=0.1, A
=0.5

=0.005, G=5 and B=2.5, 5, 13.5, and 50

find that with increasing 8 Re u decreases for G=-5 and increases
for G=5. On the other hand, at S=0 our results are agree with
those of Puri and Kythe [5].

3.5 Angular Velocity. In Figs. 7-12 we have prepared some
graphs of the angular velocity (Re N and |N|) profiles for various
values of the parameters G,p,\,w, and B which listed in figure
captions.

The variation of the Re N with 8 is displayed in Fig. 7 for w

25

20

10

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 8 Behavior of |N| versus z for p=1, »=1000, {=0.1, A\
=0.005, G=5 and B=2.5, 5, 13.5, and 50
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Fig. 9 Behavior of Re N versus z for p=1, =10, t=0.1, A
=0.005, $=0.2, and G=+5

=10. From this figure it can be seen that Re N increases with 8.

Figure 8 displays the buoyancy-assisted flow (G=5) results for
the distribution of angular velocity within the boundary layer for
various values of B. It is obvious that as the viscosity ratio 3

3.0

25

20

1.5

1.0

0.5

0.0

0 1 z 2 3

Fig. 10 Behavior of |N| versus z for p=1, w=10, t=0.1, A
=0.005, f=0.2, and G=+5
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Fig. 11 Behavior of Re N versus z for p=1, ®=1000, {=0.1, A
=0.005, f=0.2, and G=+5
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Fig. 12 Behavior of |N| versus z for p=1, ®=1000, t=0.1, A
=0.005, B=0.2, and G=+5

increases, the amplitude of the angular velocity profiles decreases.

It is obvious that the effect of increasing values of G results in
a decreasing angular velocity distribution across the boundary
layer as seen in Fig. 9. On the other hand for small (w=10) the
influence of G on |N| is negligible as shown in Fig. 10. For large
w=1000, the influence of G is negligible in both Re N and || (see
Figs. 11 and 12).

3.6 Temperature Fields. Typical variations of the tempera-
ture profiles along the spanwise coordinate are the same that was
presented by Puri and Kythe [5], therefor it is omitted here.

4 Conclusions
Based on the analysis given above, we now state the following:
(1) There are three cases of unique solution u(x,f). These cor-

respond to the nonsingular case of 8#0, /, the singular
case of 8=0, and the case B=1.
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(2) The solution for the velocity field exhibits three types of
wave motion, one corresponds to the angular velocity, the
second wave corresponds to the thermal wave, and the third
to the classical Stokes wave.

(3) The momentum boundary layer thickens and the real part
of the velocity Re u increases with increasing .

(4) The peak velocity |u| decreases with increasing 8.

(5) The angular velocity profiles |N| decreases but the real part
of the angular velocity Re N increases with increasing .
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Buckling of Long Sandwich
Cylindrical Shells Under External
Pressure

An elasticity solution to the problem of buckling of sandwich long cylindrical shells
subjected to external pressure is presented. In this context, the structure is considered a
three-dimensional body. All constituent phases of the sandwich structure, i.e., the facings
and the core, are assumed to be orthotropic. The loading is a uniform hydrostatic pres-
sure, which means that the loading remains normal to the deflected surface during the
buckling process. Results are produced for laminated facings, namely, boron/epoxy,
graphite/epoxy and kevlar/epoxy laminates with 0 deg orientation with respect to the
hoop direction, and for alloy-foam core. Shell theory results are generated with and
without accounting for the transverse shear effect. Two transverse shear correction ap-
proaches are compared, one based only on the core, and the other based on an effective
shear modulus that includes the face sheets. The results show that the shell theory pre-
dictions without transverse shear can produce highly non-conservative results on the
critical pressure, but the shell theory formulas with transverse shear correction produce
reasonable results with the shear correction based on the core only being in general
conservative (i.e., critical load below the elasticity value). The results are presented for
four mean radius over shell thickness ratios, namely 15, 30, 60, and 120 in order to
assess the effect of shell thickness (and hence that of transverse shear). For the same
thickness, the differences between elasticity and shell theory predictions become larger as
the mean radius over thickness ratio is decreased. A comparison is also provided for the
same shell with homogeneous composite construction. It is shown that the sandwich
construction shows much larger differences between elasticity and shell theory predic-
tions than the homogeneous composite construction. The solution presented herein pro-
vides a means of a benchmark for accurately assessing the limitations of shell theories in

predicting stability loss in sandwich shells. [DOI: 10.1115/1.1934513]

Introduction

The need for lightweight, yet stiff and durable structures has
made the sandwich composite configuration a leading edge tech-
nology with promise for innovative high performance structural
designs. A typical sandwich structure is composed of two thin
metallic or composite laminated faces and a thick soft core made
of foam or low strength honeycomb. This lightweight sandwich
construction is of great interest in the design and manufacture of
aircraft, spacecraft, and marine vehicles. In addition to the high
specific stiffness and strength, sandwich construction offers en-
hanced corrosion resistance, noise suppression, and reduction in
life-cycle costs.

There are several issues and questions related to the use of
sandwich construction that require attention and answers. In ap-
plications involving compressive loading, loss of stability and the
accurate prediction of buckling loads is of major concern. This is
particularly important in sandwich construction because of the
existence of the low-modulus core, which would be expected to
make transverse shear effects even more significant than in homo-
geneous composites. In addition, composite sandwich structures
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Cincinnati, OH 45221-0070.
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are normally envisioned in applications involving relatively thick
construction, therefore thickness effects need to be properly ac-
counted for.

Shell theory solutions for buckling and even initial postbuck-
ling behavior have been produced by many authors (e.g., from the
60’s, Hutchinson [1]; Budiansky and Amazigo [2], many of these
works with elegant variational formulations). Indeed, the exis-
tence of different shell theories underscores the need for bench-
mark elasticity solutions, in order to compare the accuracy of the
predictions from the classical and the improved shell theories.
Several elasticity solutions for monolithic homogeneous compos-
ite shell buckling have become available. In particular, Kardo-
mateas [3] formulated and solved the problem for the case of
uniform external pressure and orthotropic homogeneous material;
in this study, just as in the present one, a long shell was studied
(“ring” assumption). This simplifies the problem considerably, in
that the pre-buckling stress and displacement field is axisymmet-
ric, and the buckling modes are two dimensional, i.e., no axial
component of the displacement field, and no axial dependence of
the radial and hoop displacement components. The ring assump-
tion was relaxed in a further study [4], in which a nonzero axial
displacement and a full dependence of the buckling modes on the
three coordinates was assumed. Other three-dimensional elasticity
buckling studies are the buckling of a transversely isotropic ho-
mogeneous thick cylindrical shell under axial compression [5] and
a generally cylindrically orthotropic homogeneous shell under
axial compression [6]. In addition, three-dimensional elasticity re-
sults, again for homogeneous hollow cylinders subjected to com-
bined axial compression and uniform external pressure, were pro-
vided by Soldatos and Ye [7] based on a successive approximation
method.

The geometry of a circular cylindrical shell is particularly at-

JULY 2005, Vol. 72 | 493



tractive for constructing elasticity solutions due to the axisym-
metry which simplifies the analysis. Furthermore, a prerequisite to
obtaining elasticity solutions for shell buckling such as the one by
Kardomateas [3], is the existence of three-dimensional elasticity
solutions to the pre-buckling problem. Elasticity solutions for
monolithic homogeneous orthotropic cylindrical shells have been
provided by Lekhnitskii [8]. Recently, elasticity solutions for
sandwich shells were obtained by properly extending the solutions
for monolithic structures [9]. The latter is the pre-buckling solu-
tion needed to formulate the bifurcation problem in the elasticity
context.

As far as shell theory, there are but few studies reported in the
literature that deal with sandwich shell analyses [10-12]. The
comparison to shell theory predictions will be based on the for-
mulas presented in Smith and Simitses [13] and Simitses and
Aswani [14] and specialized to an infinite length cylinder, whose
behavior is similar to that of a sandwich ring.

Formulation

By considering the equations of equilibrium in terms of the
second Piola-Kirchhoff stress tensor, subtracting these at the per-
turbed and initial conditions, and making order of magnitude as-
sumptions on the products of stresses and strains/rotations, based
on the fact that a characteristic feature of stability problems is the
shift from positions with small rotations to positions with rota-
tions substantially exceeding the strains, Kardomateas [3] ob-
tained the following buckling equations:

9 14
0 0 - Y 0 0
ﬂr(a'rr — TreW: T Trzwﬁ) + - ﬂH(Trﬁ_ Tgow; + Tezw(’)

o 0 0
+ Py (7, — T, + T 0y)

1

+ ;(0',,. — Tyt T(r)zw(,.+ nga),— 27,w,) =0, (1a)
0 0 1d 0 0
;(Trﬁ + 0,0~ Trzwr) + ;%(0’99 + T — T(?zwr)
J
o 0 0
+ Py (o + 70, — O 0,)
1
+ ;(27',9 + 0'?,(1)Z - 0'(2,(,@Z + T(;ng - T?Zw,) =0, (1)
0 0 1d 0 0
E(Trz — 0,0yt Trﬁwr) + ;(9_0(7-«9: — ToWpt O-élﬁwr)
d
+—(o,.- T?zwg+ o,
dz N
1
0 0
+ ;(T,Z — 0,0+ Tyw,) =0. (Ic)

In the previous equations, 0?/- and o' are the values of stresses

and rotations, respectively, at the initial equilibrium position (pre-
buckling state), and o;; and w; are the corresponding values at the
perturbed position (buckled state).

The boundary conditions associated with Eq. (1) were obtained
from the traction (stress resultant) relationships in terms of the
second Piola-Kirchhoff stress tensor, and by further considering
the fact that because of the hydrostatic pressure loading, the mag-
nitude of the surface load remains invariant under deformation,
but its direction changes (since hydrostatic pressure is always di-
rected along the normal to the surface on which it acts). By writ-
ing these equations for the initial and the perturbed equilibrium
position and then subtracting them and using the previous argu-
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Fig. 1

Definition of the geometry and the loading

ments on the relative magnitudes of the rotations, Kardomateas
[3] obtained the following boundary conditions on a surface

which has outward unit normal (£,,7):

0 0 5 0 0 -
(Urr - TgW; + Trzw€)€ + (Tre_ Oggw + Tﬁzwe)m

+ (Trz' - ngwz + O'?ng)ﬁ = p(wzrh - (x)gﬁ) > (2(1)

0 0\ 0 0\

(1,94 00, — T, 0 ) + (T gy + T, — Ty,
+ (79, + T?sz - o'?zwr)ﬁ = —p(wzé - w,i), (2b)

0 0 \p 0 0 .

(T + T, — O + (Ty, + Typw, — T,0)M

0 0. \»a p .

+ (Uzz + To,Wr — Trzwﬁ)n = p(a)ﬁf - wr’”) . (ZC)

For the lateral bounding surfaces, m=71=0 and £=1. These con-
ditions will also be used when we impose traction continuity at
the core/face sheet interfaces.

Pre-buckling State. The problem under consideration is that of
a sandwich hollow cylinder deformed by uniformly distributed
external pressure, p (Fig. 1) and of infinite length (generalized
plane deformation assumption). Then, not only the stresses, but
also the displacements do not depend on the axial coordinate.
Alternatively, this is the assumption we would make if the cylin-
der were securely fixed at the ends. An elasticity solution to this
problem was provided by Kardomateas [9]. The solution is an
extension of the classical one by Lekhnitskii [8] for a homoge-
neous, orthotropic shell and was provided in closed form. All
three phases, i.e., the two face sheets and the core were assumed
to be orthotropic. Moreover, there were no restrictions as far as
the individual thicknesses of the face sheets and the sandwich
construction could be asymmetric.

In this configuration, the axially symmetric distribution of ex-
ternal forces produces stresses identical at all cross sections and
dependent only on the radial coordinate . We take the axis of the
body as the z axis of the cylindrical coordinate system and we
denote by R, and R, the inner and outer radii. Let us also denote
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each phase by i where i=f, for the outer face sheet, i=c for the
core, and i=f] for the inner face sheet. Then, for each phase, the
orthotropic strain-stress relations are

(i) @y dy a3 00 0 (i)

f(al()y ail2 aéz aé3 0 0 0 U((le

(1) dyy ay day 0 0 0 (l) .

75}:) “lo o o d, 0 0 ng) . (i=fief)
Y2l [0 0 0 0 a5 07

Yol [0 0 0 0 0 a7

3)
where afj are the compliance constants (we have used the notation
1=r,2=0,3=x).

Let us introduce the following notation for constants which
enter into the stress formulas and depend on the elastic properties:

i2 i2

i ;43 i i a3 .
Bu=dy - s 3122=al22_7 (i=fi.c.fa), (4a)
asz 33
i i 0335’33 . ,331 .
Bin=ap—-—; (i=fic.fa): k= > (i=f1.c.fr).
asz B
(4D)

Then, the pre-buckling stresses in each of the phases, i.e., for

i=f1, ¢, fo, are

a0 (r) = p(CPPF 4 €O, (5a)
a0 (r) = p(CPkr ! = CORp ™), (5b)
700(r) = 72(r) = 7)) = 0, (5¢)

29(7) = p{ e @t k) oy o= k) }
3 dsy

(5d)

Furthermore, the pre-buckling radial displacement is found to
be

W00 () = |:C(z) (B ‘;k :312) C(’) B —kkiﬁliz) r‘kf] . (5¢)

1 1
the other displacements being zero, i.e., v°@ () =w°?(r)=0.

The constants C(l) sz) are found from the conditions on the
cylindrical lateral surfaces (traction free) and the conditions at the
interfaces between the phases of the sandwich structure. Specifi-
cally, the traction conditions at the face-sheet/core interfaces give
two equations [9]

CY.I)(RI +f)fnt 4 Cgf])(Rl +f1) k!

= COR, + f)l + CORy + fr) ! (6a)
and
CORy— )5 + CY(R, - f) !
= CP(Ry - )l + CY (R, - ) he 7. (6b)

The displacement continuity at the face-sheet/core interfaces
gives another two equations

/1 f) f1 _ /1
C(lm(’gll +kn ) (Ry + f)fn = Cgm(ﬁ” kkfl’gm) (Ry + fy)
£l 11
= C(f) i -:{k“g?z_) (Ry +f)ke~ C(C)('BCI k 1802) Ri+f)™
(Ta)

and
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cp bbb g, _ gy cp BB g, g
C&fz) (ﬁzl‘zl _:(kuIB{ZZ) (R2 —fz)kﬂ
2
fr _ of>
oy PR toBE) i (7b)
2

Finally, the conditions of tractions at the lateral surfaces
(traction-free inner surface and pressure, p, at the outer) give

CEf})RIIf]_I + C%fl)R;kﬂ‘l =0, (8a)
R

The six linear Eqs. (6)—(8) can be solved for the six constants
C(ll), C(ZI ), (i=f1,c,f2). Other details of the solution can be found in
Ref. [9].

Perturbed State. In the perturbed position we seek plane equi-
librium modes as follows:

ui(r,0)=Ur)cosnf;, vr,0) =Vr)sinn6,
wi(r,0)=0, i=fc.fo. )
Substituting these in the strain versus displacement
N du; Lov; u; N Ow;
e=—t =iyt Do (10a)

rr or > €pp= r a0 r ¢4 oz

(i) 1 (914,- &U,’ U; (i) (9”[ &W,' (i) (91},‘ 1 (?W,-
= — +———, r=_+_’ = —_——
=00 e R a a T e
(106)
and rotation versus displacement relations
2(1)([) 1 &W 00 2w (i) _ (91,{ %
rTre0 T T a ar
5 ov; v 1du;
2000 =— 42— —— (10¢)
or r rdf

and then using the stress-strain relations in terms of the stiffness

constants, ¢} ;

Uﬁir) iy €hpoci3 00 0 (i)

‘T(e% Cilz 032 C§3 0 0 0 559()9

(1) Ci13 033 Cg3 0 0 0 ?z) .
2170 0 0 ¢ o 0 Jo | =heh
A lo 0 0 0 d oy

7 0 0 0 0 0 ckllve

(10d)

the buckling Egs. (1) result in the following two linear homoge-
neous ordinary differential equations of the second order for Uy(r),
Vi(r), where i=f; for Ry <r<R,+f;; i=c for Rj+f; <r<R,—f,

and i=f, for R,—fr,<r<R,.

(i) 0(’) U
Ay - (<z>+ ) + e
Y , C66 5 €2 2

0(
0 4 0 0'09’) nV
Cia+ Ce6— >
-
Ol
nV;
(cg;+cgz L 1
2 ) r

and
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Table 1

Material properties; 1=r,2=6, 3=z

EZ E1:E3 G}l G12:G23
Material GPa GPa GPa GPa V31 Uy =Va3
FACE SHEETS
Boron/epoxy 221.0 20.7 3.29 5.79 0.45 0.23
Graphite/epoxy 181.0 10.3 5.96 7.17 0.49 0.28
Kevlar/epoxy 75.9 5.52 1.89 2.28 0.47 0.34
CORE
Alloy foam 0.0459 0.0459 0.0173 0.0173 0.33 0.33
(isotropic)
0(i) 0(i)r 1 (c)
fop ro % c
(cgg >v' (cgg + ol Zoo —g )—' QW+ —(U +nV)=c)UL+ 22U +nV,)  (13a)
r r
O(z) 0(i)r d
ro Vi an
+[ <c66+c§gn2+— L]—; ol )
() o)
2 ’ 03 Iy (- e | Vit nU;
0(i) U 0(!) 66 2 J Co6 ~ 2 r
(c )+ ) T )h+ (c(gg+c(2’2)+ )
1 0(c) 0(c)
2 2 ©, % |y _ [ o | Vet nUe 3
. Coo + Vi—\cge — . (13b)
ro, nU; 2 2 r
— |—= =0. (11b6) . L
r Displacement Continuity:
The associated boundary conditions are as follows: Uy=U,; V=V, (13¢)

(a) At the inner and outer bounding surfaces, we have the fol-
lowing two traction conditions at each of the surfaces:

)
Ui+ ‘Z(U,+nvj) =0 (12a)

and
(cgg .

where j=f; and p;=0 at r=R; (inner bounding surface) and j
=f, and p;=p at r=R, (outer bounding surface).

(b) At the face-sheet/core interfaces, we have the following four
conditions at each of the interfaces:

Traction Continuity:

(c(i) (’ +pj)V +nU
66 5

ol
crr,(/)+l7_j>v{ _
2 / r

(12b)

where j=f, at r=R;+f; (inner face-sheet/core interface) and j
=f, at r=R,—f, (outer face-sheet/core interface).

Solution of the Eigen-Boundary-Value Problem for Differential
Equations. Equations (11)—(13) constitute an eigenvalue problem
for differential equations, with p the parameter (two point bound-

ary value problem). An important point is that o'o(i)(r) 0(i)(r) and

0(' (r) depend linearly on the external pressure, p (the param-
eter) through expressions in the form of Egs. (8) and this makes
possible the direct application of standard solution techniques.

With respect to the method used there is a difference between
the present problem and the one for the homogeneous orthotropic
body solved by Kardomateas [3]. The complication in the present
problem is due to the fact that the displacement field is continuous
but has a slope discontinuity at the face-sheet/core interfaces. This
is the reason that the displacement field was not defined as one

Table 2 Critical pressure in N/m2. Geometry: f=0.1 in., ¢=1.0 in. and B=3 in.

Classical shell®
no shear
(% versus elast)

Ry/h Elasticity

Shell w/shear®

based on G
(% versus elast)

Shell w/shear®
based on core only
(% versus elast)

BORON/EPOXY faces w/ALLOY-FOAM core

15 741,773 6,898,740 (+930.0%)
30 277,305 862,343 (+310.9%)
60 70,416 107,793 (+53.0%)
120 11,817 13,474 (+14.0%)

GRAPHITE/EPOXY faces w/ALLOY-FOAM core

15 720,842 5,650,460 (+783.9%)
30 258,549 706,307 (+273.2%)
60 61,528 88,288 (+43.5%)
120 9,918 11,036 (+11.3%)
KEVLAR/EPOXY faces w/ALLOY-FOAM core

15 605,472 2,370,590 (+391.5%)
30 171,351 296,324 (+72.9%)
60 31,418 37,040 (+17.9%)
120 4,476 4,630 (+3.4%)

651,125 (-12.2%)
253,721 (-8.5%)
67,383 (-4.3%)
11,717 (-0.85%)

637,826 (-11.5%)
238,236 (=7.9%)
59,207 (-3.8%)
9,829 (~0.9%)

551,668 (=8.9%)
162,433 (-5.2%)
30,712 (=2.2%)
4,403 (-1.6%)

899,768 (+21.3%)
323,361 (+16.6%)
76,087 (+8.0%)
12,203 (+3.3%)

874,654 (+21.3%)
298,643 (+15.5%)
65,825 (+7.0%)
10,168 (+2.5%)

719,856 (+18.9%)
188,347 (+9.9%)
32,397 (+3.1%)
4,470 (-0.13%)

*Equation (14).
quuation (17).
“Equation (18b).
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Table 3 Critical pressure in N/m?. Effect of increased face thickness: f=0.3 in., ¢=0.6 in., and B=3 in.

Classical shell
no shear

Ry/h Elasticity (% versus elast)

Shell w/shear

based on G
(% versus elast)

Shell w/shear
based on core only
(% versus elast)

GRAPHITE/EPOXY faces w/ALLOY-FOAM core

15 1,244,010 11,731,900 (+943.1%)
30 393,573 1,466,490 (+372.6%)
60 105,699 183,311 (+73.4%)
120 19,297 22914 (+18.7%)

416,091 (-66.6%)
188,038 (-52.2%)
67,900 (-35.8%)
16,081 (-16.7%)

1,501,160 (+20.7%)

542,378 (+37.8%)
128,553 (+21.6%)
20,709 (+7.3%)

function but as three distinct functions for i=f}, ¢, and f, i.e., the
two face sheets and the core. Our formulation of the problem
employs, hence, “internal” boundary conditions at the face-sheet/
core interfaces, as outlined above. Due to this complication, the
shooting method [15] was deemed to be the best way to solve this
eigen-boundary-value problem for differential equations. A special
version of the shooting method was formulated and programmed
for this problem. In fact, for each of the three constituent phases
of the sandwich structure, we have five variables: y,=U,, y,=U;,
y3=V;, y4=V;, and ys=p. The five differential equations are: y|
=y,, the first equilibrium Eq. (11a), y3=y,, the second equilibrium
Eq. (115) and y;=0.

The method starts from the inner boundary r=R; and integrates
the five first order differential equations from R; to the inner face-
sheet/core interface R|+f (i.e., through the inner face sheet). At
the inner bounding surface, R, we have three conditions, the two
traction boundary conditions, Egs. (12), and a third condition of
(abritrarily) setting Uy =1.0, therefore we have two freely speci-
fiable variables. The freely specifiable starting values at R; are
taken as the ys (pressure), and the y; (V) and these are taken as
the values from the shell theory (described later). Then, the three
boundary conditions at r| allow finding the starting values for y,
¥, and y4. Once we reach the inner face-sheet/core interface, R
+fi, the tractions from the inner face-sheet side are calculated;
these should equal the tractions from the core side, according to
the boundary conditions on the face-sheet/core interface, Eqs.
(13a) and (13b). This allows finding the slopes of the displace-
ments, y,=U, and y,=V/, for starting the shooting into the core
(notice that the other three functions, y,=U,, y3=V,, and ys=p are
continuous according to Eq. (13¢), and their values at R, +f, have
already been found at the end of the integration step through the
inner face sheet). The next step is integrating the five differential
equations from R +f; to R,—f>, i.e., through the core. In a similar
manner, once we reach the outer face-sheet/core interface, R,
—f5, the tractions from the core side are calculated; these should
equal the tractions from the outer face-sheet side, per Eq. (13a)
and (13b), and this allows finding the slopes of the displacements,
y2=Up, and y,=Vj,, for starting the shooting into the outer-face
sheet "(again, the other three functions are continuous and their
values at R,—f, have already been found at the end of the inte-
gration step through the core). The third step is the integration
through the outer-face sheet. Once the outer bounding surface, R,,

is reached, the traction boundary conditions, Egs. (12), which
ought to be zero, are calculated. Multi-dimensional Newton—
Raphson is then used to develop a linear matrix equation for the
two increments to the adjustable parameters, ys and y;, at R;.
These increments are solved for and added and the shooting re-
peats until convergence. For the integration phase, we used a
Runge—Kutta driver with adaptive step size control. The method
produced results very fast and without any numerical complica-
tion.

Results, Comparison with Shell Theory and Discussion

As an illustrative example, consider a sandwich ring with the
following geometry: core, c=25.4 mm (1 in.), face sheets f;=f,
=f=2.54 mm (0.1 in.) and width B=76.2 mm (3 in.). This value
for B was chosen in order to assume that buckling is in the plane
of the ring and not out of the plane. Note that the sandwich is
symmetric about its midsurface. The total thickness of the ring is,
thus, h=2f+c=30.48 mm (1.2 in.), and is kept constant. The
mean radius, R, is chosen in such a manner that the ratio Ry/h
ranges from 15 to 120.

Material properties for the face sheets and the core are given in
Table 1. The core is isotropic alloy foam and the face sheets are
boron/epoxy or graphite/epoxy or kevlar epoxy unidirectional
with O deg. orientation with respect to the hoop direction. Note
again that 1 is the radial (r), 2 is the circumferential (6), and 3 the
axial (z) direction.

Notice also that by referring to Eq. (1), the compliance con-
stants for each orthotropic phase are

1 1 1 1 1
an =" an=_5 a3=5 d4=""; d55=
E, Ey’ Ey’ Go’ Gy’
1
Ae6 = >
G
1 ) S
2== ’ 3=~ 5 23=" .
£, E; E;

Since the shell is considered to be very long, the buckling
analysis reduces to that for a ring [12]. If the transverse shear
effect is neglected, the expression for the pressure becomes (clas-
sical)

Table 4 Critical pressure in N/m2. Comparison with homogeneous: f=0.1 in., c=1.0 in., and B=3 in.

Clasical shell
no shear

Ry/h Elasticity (% versus elast)

Shell w/shear Shell w/shear

based on core only
(% versus elast)

based on G
(% versus elast)

GRAPHITE/EPOXY homogeneous (no sandwich)

15 12,594,400 13,407,400 (+6.5%)
30 1,641,360 1,675,930 (+2.1%)
60 208,228 209,491 (+0.61%)
120 26,180 26,186 (+0.03%)

12,831,500 (+1.9%)
1,657,330 (+0.97%)
208,905 (+0.33%)
26,168 (=0.05%)

12,924,100 (+2.6%)
1,660,400 (+1.2%)
209,002 (+0.37%)
26,171 (=0.03%)
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, 14
BR (14)

Pce
where (EI)q is the equivalent bending rigidity, given in terms of

the extensional moduli of the face sheets E; and the core E, by
[16] '

f3 (f ¢ )2 C3
El)=w|E—~+2Ef\=+=| +E.—|. 15
( )eq W|: f6 fj ) c 12 ( a)
If the transverse shear effect is accounted for, then
(ED) (ED)
Pwishear = — 5= — (16&)

BRY(1 +4k,)’ CR}’

where

c:f KGdA, (16b)
A

K being a shear correction factor taken as equal to one and G is
the transverse shear stiffness of the sandwich cross section.

Two different expressions for C are employed herein. In the
first case, it is assumed that only the core contributes, in which
case, C=BcGY, and

(EDg
= S

BcG{,R;
where G, is the shear modulus of the core.

In the second case, an effective shear modulus for the sandwich

s1 (17)

section, G, which includes the contribution of the facings, is de-
rived based on the compliances of the constituent phases [16]. The

expression for G is given by
2f+c_2f ¢

— =5t

G G, Gp

(18a)

where G/, is the shear modulus of the facings. Therefore, in this
case
ko= LI)“]_.
B(2f +¢)GR}

Table 2 gives the critical pressure from the elasticity formula-
tion for a range of mean radius over total thickness ratios, in
comparison with the classical shell and the two shear deformable
shell formulas.

In all cases, n=2 was used in the buckling modes, Eq. (9). This
has been well established for isotropic cylindrical shells under
external pressure; however, since we are dealing with a sandwich
structure whose core has elastic properties that are orders of mag-
nitude different from those of the face sheets, verification of this
postulate was needed. Indeed, in all cases examined, an exhaus-
tive search was made for the n that results in the minimum eigen-
value, and it was indeed found that n=2 corresponds to the lowest
eigenvalue. For example, for the case of graphite/epoxy faces with
alloy-foam core and Ry/h=30, the eigenvalues found from the
elasticity solution were (in N/m?) as follows: (n=2;258,549),
(n=3;397,355), (n=4;469,798), (n=5;512,410).

Now coming to the results in Table 2, it is seen that the classical
(no shear) formula can yield results highly nonconservative, even
approaching ten times the elasticity value for the lower ratio of
Ry/h and boron/epoxy case. Both shear correction formulas yield
reasonable results with the shear correction formula based on the
core only being in general conservative as opposed to the shear

(18b)

correction formula based on an “effective shear modulus,” G,
which is nonconservative.

An illustration of the results in Table 2 is provided in Fig. 2,
which shows the critical pressure, p,, normalized with the simple
formula from classical shell theory, p.¢, Eq. (14), as a function of
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Fig.2 Critical pressure, p,,, normalized with the classical shell
formula, p.,, Eq. (14)

the mean radius over thickness ratio, Ry/h. The results are derived
from the elasticity formulation and the two shell theory formulas
with transverse shear, for the case of graphite/epoxy faces with
alloy-foam core. The results show clearly the very significant ef-
fect of transverse shear as the ratio Ry/h becomes smaller (thicker
shell), in the sense that p, is only about 12% of the p., (which
ignores transverse shear) for Ry/h=15. It is also seen that the
elasticity results are between the two shells with shear correction
formulas, as already discussed in the previous paragraph. For thin-
ner shells, the transverse shear effects get diminished; for ex-
ample, for Ry/h=120, the p, is about 90% of the p.,.

In the results presented in Table 2, the face sheets were quite
thin and the shear correction formula based on the core only, Eq.
(17), seemed to be more accurate. In order to further examine this
premise, the critical load was calculated for a construction in
which the total thickness remains the same but the face sheet
thickness is increased at the expense of the core. The results, listed
in Table 3, show that the shear correction formula based on an
effective modulus (which includes the core), Eq. (18b), is now
more accurate.

In order to compare with the homogeneous, monolithic, Table 4
gives the critical pressure for a construction made of graphite/
epoxy homogeneous, i.e., no sandwich. It is seen that the differ-
ences from the elasticity values are modest, even with the classi-
cal shell formula. This illustrates the nature of sandwich
construction, in which buckling is a more demanding issue.
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Anisotropic Elastic Tubes of
Arbitrary Cross Section Under
Arbitrary End Loads: Separation
of Beamlike and Decaying
Solutions

First approximation analytical solutions are constructed for finite and semi-infinite, fully
anisotropic elastic tubes of constant thickness h and arbitrary cross section, subject to
purely kinetic or purely kinematic boundary conditions. Final results contain relative
errors of O(NhIR), where R is some equivalent cross sectional radius. Solutions are
decomposed into the sum of an exact beamlike or Saint-Venant solution, treated in
Ladeveéze et al. (Int. J. Solids Struct., 41, pp. 1925-1944, 2004) and extended in an
appendix; a rapidly decaying edge-zone solution; and a slowly decaying semi-membrane-
inextensional-bending (MB) solution. Explicit conditions on the boundary data are given
that guarantee decaying solutions. The MB solutions are expressed as an infinite series of
complex-valued exponential functions times real-valued one-dimensional eigenfunctions
which satisfy a fourth-order differential equation in the circumferential coordinate and

depend on the pointwise cross sectional curvature only. [DOL: 10.1115/1.1934532]

1 Introduction

Consider a straight tube constructed of elastic, anisotropic lay-
ers of constant but possibly different thicknesses. If the tube is
under surface loads and any combination of end loads and dis-
placements (compatible with overall equilibrium and no rigid-
body displacement), then, as Ladeveze and Simmonds [1,2] have
shown (within the framework of linear elasticity), the solution of
the governing equations may be decomposed exactly into a beam-
like part and a decaying part. We shall refer to these two compo-
nents as a Saint-Venant (SV) part and a decaying (D) part, respec-
tively.

As e=h/R, the constant thickness of the tube divided by some
typical radius of the cross section, approaches zero, the D part of
the solution displays three characteristic decay lengths: (1) a very
short length, O(h), associated with a three-dimensional edge ef-

fect; (2) a moderately short length, O(\e‘“‘hR), associated with the
bending edge effect of classical (ﬁrst—amoximation) shell theory;
and (3) a very long length, O(RVR/h), associated with the
semimembrane-inextensional bending (MB) behavior of the shell.
(We note that each of these decay lengths also depends strongly
on the ratios of various anisotropic elastic coefficients.)
Ladeveze et al. [3], using the linear first-approximation shell
theory of Sanders [4] and Koiter [5], have analyzed the beamlike
behavior of an elastic tube of arbitrary anisotropy and cross sec-
tion. Some corrections and extensions are presented in the Appen-
dix. In the present paper, we examine the complementary solu-
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tions associated with the decay lengths (2) and (3) mentioned
above in the absence of surface loads; an accurate resolution of
the three-dimensional zone (1) lies outside the range of any shell
theory (despite many claims to the contrary in the literature). (For
references to work on this latter problem, see, for example, the
book edited by Ladeveze [6] or an earlier review paper by Sim-
monds [7] where citations of relevant papers by Friedrichs and
Dressler, Goldenveiser, Green, Gregory and Wan, Ladeveze, and
others are given.) In particular, for the two extreme cases of (A)
end loads only or (B) kinematic end conditions only, we develop
conditions on the data that insure decaying solutions. Moreover,
we show that these data may be decomposed into a set that, to
lowest order, i.e., to within a relative error of O(g!?), determines
the MB solution and a complementary set that subsequently de-
termines the EZ solution. We note that, except in relatively long
tubes, the MB solution may well be as important in the interior of
the tube as the beamlike solution.

2  Geometry

In a fixed Euclidean frame {i,j,k}, let (r, 8,x) denote a set of
circular cylindrical coordinates with associated orthonormal base
vectors [e,(6),e,(0),k}. We take the vector representation of the
reference surface of the tube to be

Tx=Rxk+r(y)], res,

Here, 27R is the circumference of 7, and x and y are, respectively,
dimensionless distances along and around 7. Differentiation with
respect to x and y will be denoted by a prime (') and a dot (°),
respectively. Thus, with r=|r| denoting dimensional radial dis-
tance, we have

Osx=<|,

0<y<2m (1)

y 7
r=r(y)e (6 and 6= if M’ )

0 r(7)

where the = sign allows for the possibility that S might not be
star shaped with respect to the chosen axis of 7. (If 7 is a circular
cylinder, r=1 and y=6.) Finally, we let
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k=(r"Xr")ek 3)

denote the dimensionless curvature of S.

3 Governing Equations

When convenient, we use Cartesian tensor notation, with x
=x; and y=x,. Thus, let 0hN,g Oh*M g, (O'/E)Ea[;, and
(o/hE)K ap @=1, 2, denote, respectively, the (modified, symmet-

ric) stress resultants, stress couples, extensional strains, and bend-
ing strains of the linear shell theory of Sanders [4] and Koiter [5],

where o is some measure of the stress level in the tube and E is
some nominal Young’s modulus. In component form, with the
notation

Ta/ﬁ = {Txa Tv Ty}v (4)

the equilibrium and compatibility conditions of the Sanders-
Koiter theory are

N +[N-(1/2)exkM] =0, (5)
N’ + Ny +ex[3/2M" + M3]=0, (6)
—e(M{+2M'*+ M}) + kN, =0, (7)

K, —[K+(1/2)exE]" =0, (8)
-K'+K.+ex[(3/2)E' -E]=0, 9)

s(E;—ZE"+E;‘)+KKX=O. (10)

These equations have been written in a form that displays the
static-geometric duality of Goldenveiser [8] and Lure [9]. This
duality implies that the equilibrium Egs. (5)—(7) go over into the
compatibility conditions (8)—(10) if the variables below on the left
are replaced by those on the right

Naﬁ:KaB’ Maﬁ:_EaB' (11)
Here, we have introduced the “hat” notation
faﬁ = ea)\eBy,T}\/.L = {Ty,_ T, Tx}’ (12)

where e, is the two-dimensional alternator.

To complete the set of field equations, we must add constitutive
relations. To exploit fully the economy offered by the static-
geometric duality, we follow McDevitt and Simmonds [10] and
write these in the form

_Eaﬁ= lﬂ,NﬂB:_Aaﬁ)\,uN)\p.*' Caﬁ)\p.K)\/.L (13)
M,p= lﬂ,xaﬂ:AZﬂqum"' CZB)\MN)\W (14)

where A, , is the dual of —A g Cogy = Cruagp is the dual of
CaB}\,u,! and

Y= (1/2)(142;;)\#[((151()\,4 + CoprnulNVapKyu + CZB)\/.I,K&[;N)\,LL

- Aaﬁ}\p.NaBN)\p,) (15)
is the dimensionless mixed-energy density. The quadratic form
(15) implies that, in general, there are 21 dimensionless elastic
coefficients.

Finally, we add the auxiliary strain-displacement relations of
the Sanders-Koiter theory (which must be integrated to obtain

displacements for use in boundary conditions). If (R%a/ Eh)U de-
notes the displacement field, where

U=Ux,y;e)k + V(x,y;e)t(y) - W(x,y;e)n(y) (16)
and t=r*(y), n=k X t(y), then these take the form
eE,=U', 26E=U"+V', gE,=V'+«kW (17)

and
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K.=-W',

; K=-W'"+@3/4)xV' - (1/4)xU,

(18)
K,=— (W - «V)".
(Analogous stress-stress function relations exist, but are not
needed in what follows.)

Let ohRT denote the net traction acting on the material to the
left of any cross section of the tube and let ohR*M denote the net
moment with respect to the centroid (r=0) of the cross section.
Then

2
sz N,(x,y;e)dy
0

and

21
M=f [r(y) X N,(x,y:e) — eM (x,y:e)t(y)ldy,  (19)
0

where

N, =Nk + [N+ (3/2)exM]t— (M. + 2M*)n (20)
is the effective dimensionless axial stress resultant in the Sanders-
Koiter theory. (See Budiansky and Sanders [11], Eq. 15.) The

beamlike (SV) solutions developed by Ladeveéze et al. [3], in the
absence of surface loads, satisfy the global beam equations

T=T(0) and M=M(0)-xk X T(0) (21)

as well as all the local field equations [providing certain negligible
terms of O(e) are added to the stress-strain relations]. The decay-
ing EZ and MB solutions we now develop satisfy all the local
field equations to O(g"/?) plus the global conditions T=M=0.

4 Edge-zone (EZ) Solutions

To extract these from the field equations, we scale certain of the
variables as follows:
x=g'"”x, (N.K)=&""(N.K), (N.K,)=e(N.K,)
(22)

(U, V)=&"(U,V), W=¢eW,

where an overbar indicates that a variable is a function of x, y, and
& only. Then, we set d()/dx=()# and assume that differentiation

with respect to X and y does not change orders of magnitude.
Thus, Egs. (5)-(10), (13), (14), (17), and (18) assume the forms

N+ N =0(e'?), (23)

N*+N; +0(e'"), (24)

- M7 + kN,=0(e"?), (25)

Kl-K*=0(e"?), (26)

- K"+ K:=0('"?), (27)

EV + kK, =0(s'"), (28)

Eop=A,gN, - Cop K, +0(s'), (29)

MaﬂzAZﬂHEx"' Cllaﬁﬁy'" 0(e'), (30)

E. =U* 2E=V+0(e"), Ey=KW+O(8”2), (31)
K==W K=-W"+0("?), K,=—W*+0(c"?).

“ (32)

From (25) and (30), we have
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— (Al K, + Ci1 ;N + kN, = O(e'?), (33)
and from their duals, (28) and (29)
(Allllﬁy - Cink )™ + kK, = 0(e"?). (34)

Noting that Cyy;;=C},;;, we introduce the complex-valued un-
known

NyEI\_[,v+i\“"AT111/A1111[_(x (35)
and constant
) i
o= = - . (36)
VA A +HiChn
Then Egs. (33) and (34) may be combined as
./T/f#— ﬁzk(y)Nv =0(e'?). (37)

Ignoring the O(g'?) term, we write the general solution of Eq.
(37) as

N, = Co(y)exp[+ax(y)xTY, (38)

where the complex-valued function C, will be determined from
the boundary conditions by combining them with the MB solu-
tions that we determine next. (If k<0, «!/? is imaginary.)

5 Semimembrane-Inextensional-Bending (MB) Solu-
tions

To obtain equations for the MB solutions, we scale certain vari-

ables as follows:
e'’x=%, (NK)=&"(NK), (N,.K)=s(N,K,), U=&"U,
(39)

where a tilde denotes that a variable depends on X, y, and & only.
Then, with d()/dx=()" and the assumption that differentiation with
respect to X does not change orders of magnitude, Egs. (5)—(10),
(13), (14), (17), and (18) take the form

N;+N*=0(&"?) (40)

N+ N3+ kM3 =0(e"?), (41)

—M;‘+ KﬁyzO(s”z), (42)

K,-K*=0(e"?), (43)

—1?"+12;—KE;=O(8”2), (44)

E}'+ KI?X=O(8“2), (45)

Eap=AupnN,— Copnk, +0(e'"), (46)

M p=AnpK, + CopoN, +0(s"?), (47)

E=U, U+V=0E"), V+xW=0(), (48)
K.=—W", K=-W"+3/4)xV - (1/4)kU",

(49)

R, = ("~ V.

By differential elimination of N and ﬁy, Eqgs. (40)—(42) reduce
to

Ny =(MM;)*+0(e"), (50)

where
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= i[p(y)di] +x(y), p=x(y). (51)
y

dy

Substituting Eq. (47) into Eq. (50) and noting that C2222=C;222,
we have

Ny =[M(CyoN, +A;222ky).]- +0(e'"?). (52)
The dual of Eq. (52) follows readily as
1?} = [M(CZZZZEy ~ApN) T +0(e?). (53)

If we set

No= N+ iNApl Ay, and 22 = Cogy = iNApyypAg,
(54)
then Egs. (52) and (53) may be combined into the single complex-
valued equation
Ny = B(MAY)+0(e"). (55)

To O(&!?), Eq. (55) admits homogeneous solutions of the form

Ny = C.exp(Mad)Q(y), (56)

where the 6‘1 are complex-valued constants and () is a real-valued
function satisfying the differential equation

NQ = (M) =[p(Q~]" +[x(»Q°T
and auxiliary condition
Qy +27) = Q(y).

Note from Egs. (57) and (58) that if A\ # 0, then f%"ﬂdy:O.

Since Q is 27-periodic, Egs. (57) and (58) represent a standard,
self-adjoint eigenvalue problem which, if « is suitably smooth and
nonvanishing on [0,27] (as we shall assume), admits a countable
set of real-valued eigensolutions, {)\2,0,1}::0, where 0=\g<\,
<\, <--- and the (), satisfy the orthonormality condition

(57)

(58)

2
J Q,,»Q,(y)dy=6,, mn=0,1,2,..., (59)

0
where &, is the Kronecker delta. The two eigenfunctions corre-
sponding to A=0 have the explicit forms

0 1

Qy=1/V27 and Q= cer(y). (60)
Here, ¢ is a constant vector perpendicular to k satisfying mcelec
=1, where

2
I= (1/7T)f r(y)r(y)dy=1". (61)
0

(For a circular cross section, I is the two-dimensional identity
0 1

tensor 1.) To make () orthogonal to €}, we take the tail of r to

coincide with the centroid of the cross section of the reference

surface so that
2
f r(y)dy=0.

0

(62)

The nondecaying solutions associated with the eigenfunctions
(60) are the Saint-Venant (beamlike) solutions discussed in [3]
and the Appendix.

6 Reciprocity

As in Ladeveze and Simmonds [2], the Betti reciprocity prin-
ciple may be used to ensure that end data produce decaying solu-
tions. To present this principle in its various forms, let
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s=(V,eE,,&'"Z.;F,&e'"Z,eM,) = (V.F) (63)

denote a kinematic-kinetic pair, where Z and its dual Z: are de-
fined in Eq. (A6), and

V=Uxy:e)k+V(x,y;e)t(y) and F = F(x,y;e)k + S(x,y;e)t.
(64)

If we introduce the following inner product at any section x=
constant;

2
[5.5], = f (F-V-FE-V)dy. (65)
0

then, for any two states s and § satisfying the field Egs. (5)—(10)
the Betti reciprocity principle in the Sanders-Koiter theory implies
that

[s,5],=[s,5],, O0<a<nx. (66)

That is, [s,s], is a constant.

7 End-Loaded, Semi-Infinite Tube

We consider first a semi-infinite tube. Of the various combina-
tions of kinematic-kinetic end conditions that might be imposed in
accordance with Eq. (A7), the dimensionless form of the external
virtual work, we confine ourselves to two extreme cases: (A) F
(i.e., F, Z, and M) prescribed and (B) V (i.e., V, Zs, and E,)
prescribed. )

7.1 Case A: End Loads Prescribed. In Eq. (66) let s be a
linear combination of rapidly decaying edge-zone (EZ) solutions
and slowly decaying semimembrane-inextensional-bending (MB)
solutions. For § we merely take the rigid-body solution

U=D+RX (r+xk), F=0, Z=Z.=M,=E,=0, (67)

where D and R are constant displacement and rotation vectors.
Since s comprises exponentially decaying solutions whereas the
components of § have, at most, algebraic growth, lim[s,s],=0, so

X—0

that at a=0, Eq. (66) reduces to

2 2
[5.5]y=~De f F(y)dy - Re f [x(») X E()Jdy =0,
0 0

(68)

where, here and henceforth, a hat (A) is used to denote a prescribed
variable. As D and R are arbitrary, Eq. (68) yields the familiar
requirement that, modulo a rigid body movement and in the ab-
sence of surface loads, the total edge force and moment must
vanish for exponential decaying solutions to exist.

To determine the decaying solutions themselves, we introduce
the scaled EZ (7)) and MB (7) variables defined in Egs. (22) and

(39) and take F in the form
F=F()k+e"2S(0)t(0), (69)

where [ S’Tli‘ dy=/[ 3”r><f‘dy=0 and where the normalizing stress
measure ¢ introduced at the beginning of Sec. 3 is chosen so that

SOILIZO)LIM ()]} =1. (70)

5

max {|F(y)
O=sy<2m

Note that Eq. (A14) implies that S=0(&¥?) and S=0(g"?)
whereas, Eq. (A13) implies that F=0(g%?) and F=0(1). By Egs.
(A6), the boundary conditions take the form

F(0,y;6) = F(y) + O(6¥?) = F(0,y;0) = F(y),  (71)

5(0,y;€) = S(y) + O(g) = 5(0,y;0) = S(y), (72)
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p(1)M*(0,y;€) = Z(y) + O("?) = p(y)M*(0,y;0) = Z(y),
(73)

M(0,y58) + M,(0,y58) = M,(y) = M,(0,y;0) = M,(y)

- M (0,y;0). (74)

Thus, the prescribed vector stress resultant (69) determines the
membrane-inextensional bending (MB) solution to lowest order.

We now determine the MB solution explicitly. Setting e=0 and
C_=C, we have, by Egs. (54), (56), (71), and (A5)

©

F0.y:0)=N,0.5:0) = X RC,Q,0) = F(),  (79)
1
where from the orthogonality condition Eq. (59)
27
RC,= f F;)Q,()dy = F,. (76)
0

Next, from Egs. (40), (57), (75), and the second part of (A5), the
condition that N must approach zero as X— is

%

5(0,y;0) = N(0,;0) = >, R(&C,) M)\, = S().
1

(77)

To obtain from Eq. (77) a second relation for C ,, to complement
Egq. (76), note by Egs. (57) and (59), and an integration by parts
that

2 2
- f (MD;) s dy = f (MO;)*Qdy =N} 8- (78)
0 0
Thus, Eq. (77) yields
27
- R(EC,) = (l/kn)J SO ()dy =S, (79)
0

It now follows from Egs. (76) and (79) that, with Z=a@+ip

~ 4 aF, +§
ot 28]

- (80)
B
and, from the second part of Eq. (54)
[ a [ R 2
V2) (= = NAnnAy, + Ch+ Con. (81)

Next, we determine the edge-zone (EZ) solution. To satisfy
Eqgs. (73) and (74), we insert the real part of Eq. (38) into Eq. (25)
integrate either once or twice with respect to x, and discard (non-

decaying) functions of integration. With C_=C, the resulting ex-

pressions for M, and Mf evaluated at x=0 and inserted into Eqgs.
(73) and (74), yield

RC(y) = Z(y) (82)
and

= RIC()"(y)/E] = M (y) = M(0,y;0) = AM(y).  (83)
Because the MB can be determined first,
M (0,y;0)—and hence AM(y)—is known. Thus, with 1/i=a

+if3

solution

C=2(y) +iD(y), (84)

where
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l_|: A@ + aZ(y):| if k(y)>0
p=4" <) (85)
%[AM B2y )} if k() <0
al V)|
and, from Eq. (36)
\"E ; = i\/\"/AuuATm+C%111ic%m~ (86)

7.2 Case B: End Displacement and Rotation Prescribed.
To guarantee decaying solutions, we need conditions on the pre-
scribed kinematic variables. However, we may deal with these
later because the forms we have assumed for the EZ and MB
solutions decay automatically, regardless of the boundary
conditions.

Let the prescribed kinematic boundary conditions have the form

E\y),
(87)

V(0,y;8) =20k + V()t(y), E,0,y;e) =

Z.(0,y38) = Z(y)

where Z. is defined in the second part of Eq. (A6) and the nor-
malizing stress measure o is chosen so that

2y =1. (88)

<y<2

By adding the EZ and MB solutions and noting the scalings in
Egs. (22) and (39), we may express the boundary conditions as
uy, (89

U(0,y;e) = U(y) + O(g) = U(0,y;0) =

V(0,y;8) = V(y) + O(¥?) = V(0,y;0) = V(y),  (90)

p(EN0,y1€) == Z:(y) + O(e"?) = p(») EN(0,y;0) = - Z.(y),
1)

E\0,y36) + E,(0,y:8) = Ey(y) = E(0,y30) = E,(y) - E,(0,y;0),
(92)

where the last two boundary conditions are the duals of Egs. (73)
and (74). Note that the prescribed axial and tangential end dis-
placements determine the membrane-inextensional bending (MB)
solution to lowest order.
Because in the second and third part of Eq. (18), and Eq. (A5),
the static-geometric duality (11) imply that
Fe=K,+&(pE)"=[M(V)]" (93)
and
= S.==K+&{lp(= E, + 2E°)]"+ (3/2)kE} = M(U*), (94)

we may replace Egs. (89) and (90)—assuming sufficient
smoothness—by the duals of Egs. (71) and (72) namely,

Fu(0,y38) = Fu(y) + O(6¥?) = F(0,y;0) = Fu(y)  (95)
and
S:(0,y:8) = 8:(y) + O(e) = S+(0,y;0) = S+(y). (96)
Note that the dual of Eq. (69) is
F.=F.(y)k - e25.(»)t(y). (97)

To satisfy Egs. (95) and (96), we use the duals of Egs. (75) and
(77) to conclude that
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%

Fu(%,y:0) = 2 I[C; exp(= N, &)1, (y) (98)
1

and
o

5.(®,y30) = = X I[AC, exp(= N, A0 IM[Q () IN,.,  (99)
1

where C,=VAy2/A5,C,. The duals of Eqs. (76) and (79),
namely,

2m
IC,= f F.(y)Q,()dy = F, (100)
0
and
I(ac,) = (1/x, )f S (y)dy = 5, (101)
yield the dual of Eq. (80)
~ S' - aF n
C,=———+IiF,, (102)

B

where @ and [S' are given in terms of the elastic constants by Eq.
(81). Note that all dual equations follow from the dualities
S:= 8-, ié,,:é;.

F:Fs, (103)

It is easy to verify that if we set Co=VA|, 11/A7;1,C and use the
dualities

Z:Z., My—E, iC:C:, (104)
then the kinematic boundary conditions (91) and (92) yield
C.=-D.(y) +iZ.(y), (105)
where
1 AE 0
i|: Z(y) - ) if k(y) >0
A~ Ky
D.= B (106)
1
lBZ*( )+ —M:| if k(y) <0
VIk()]

and where @ and S8 are given by Eq. (86). (Note that & and 3 are
their own duals.)

8 Decay Conditions on Kinematic End Data for a
Semi-Infinite Tube

To develop these, we consider [§—s ., following earlier
work in [2,12-14], Here, § is any solution of the field equations
satisfying the prescribed kinematic boundary conditions and s€ is
one of a set of six canonical solutions such that V€(0,y;e)=0. We

SV,SC]

denote the associated Saint-Venant solutions by s5V and s, re-
spectively. Finally, we take
WE(0) = 9(0) = 0. (107)

Thus, by Egs. (65) and (66) and because lim[s—s3V]=0, we have

xX—%

[§-s,sYy = f [FC- (VY= V)lpdy=0. (108)
0
But, by (A82)
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27
f (EC- Y*V)ody = T(0)e[ W/(0) + ew(0)]+ M(0)o[ @,
0

+e¢p(0)]+ T(0)s f VW(AT- FO)dy

+M%Y(0)s J B FOdy. (109)

By Egs. (107), (A85), and (A86), the last line of Eq. (109) van-
ishes. Furthermore, linearity implies that the canonical solution
for F can be put in the form

FC=TY0) - E{(x.y;e) + ME(0) - F(x.yze).  (110)

Thus, because TC(0) and MS(0) can be prescribed

independently—by Eq. (21) the overall equilibrium equations are

always satisfied—Egs. (108) and (109) yield the desired kinematic

boundary conditions for the exact beamlike Egs. (21), (A72), and
(A76)

2

W,(0) + ew(0) =f

0

F§(0,y;58) - V(y)dy (111)

and

21
D, +e(0) = f F(0,y58) - V(y)dy. (112)

0
In particular, the vanishing of the beamlike solutions associated
with §, which in the present case mean that the right sides of Eqs.
(111) and (112) vanish and TSV(0)=M5V(0)=0, implies that the
prescribed data at x=0 and x=2 produce decaying solutions only.

Without going into detail, we note that s¢ may be constructed
by setting sczsgv+slé (where “R” stands for “residual,”) subject
to the boundary conditions coming from Egs. (A6), (A7), and
(A20), namely,
0

0
FX0.y:e) == F2V(y), $%0.y:e)=-20"(y)  (113)

and
Z80.y;:8) == 22(0.y),  ENO0.y:e)=-E"(0,y), (114)

where the terms on the right of Eqgs. (113) and (114) are the
Saint-Venant solutions associated with T€(0) and M€(x). One
then sets s§=§1é+§1é and proceeds as in Case B of Sec. 7.

9 End-loaded Tube of Length RI

The exact, beamlike part of the solution is governed by Eqgs.
(21), (A55), (A59), (A60), (A72), and (A76). To compute the EZ
and MB stress solutions, we need only modify the MB solution
coming from Eq. (56) by setting

N,= 2, RIC; cosh(\, %) + (Cy/ @)sinh(\,, &0 1Q, (),
1

(115)

where the superscripts “c” and “s” identify the associated hyper-
bolic functions cosh and sinh. In place of Eq. (76), we now have,

with F0 denoting the value of F prescribed at x=0, etc.,

2
RC,= f F(y)Q,(y)dy = F, (116)
0
and in place of Eq. (79)
21
RC,=(1/\,) f S (y)dy = 5. (117)
0
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At the right end of the tube, the corresponding relations are

R[E‘ﬁ cosh(\, ze"l) + (Ef,/ﬁ)sinh()\nﬁs“zl)]

2
= f F(y)Q,(y)dy = F,. (118)
0
and
R[ACE sinh(\,@&'?l) + C cosh(\,ze"1)]
2
=(1/\,) J P(y)Q(y)dy = P.. (119)
0

To solve these equations, we set ﬁ=&+i,§, as before, and use
the identities

cosh[\,(@ + iB)eI] = cosh(\, @e 1) cos(N, Be 1)

+i sinh(\,@e"?)sin(\, Be'?l) = T, + iK,,
(120)

and
sinh[\, (& + iB)e""] = sinh(\, @e 1) cos(\, Be 1)

+i cosh(\,@e"*)sin(\,,Be'?l) = H,, + i,
(121)
Then, with

(122)

it may be verified that Egs. (116)—(119) lead to the simultaneous
equations

Co=FO+iA¢ and C=8°+iA

n

(@l,+ BH,)AS + K,AS = (aH, - BI,)F0 +7,5°- 8! (123)

and

. al, - BH, | JP aH, - BI, | -
mz{—“" ‘i”};aﬂ-d{—“" 18"}52-
&2_'_32 &2+BZ
(124)

These may be solved in specific cases with no difficulty.

10 Conclusions

We have shown how to decompose the linear Sanders-Koiter
equations applied to a fully anisotropic (21 constant) tube of ar-
bitrary cross section into an exact beamlike (or Saint-Venant) so-
lution plus edge-zone and membrane-bending solutions given ex-
plicitly to within a relative error of O(g'?). For the two extreme
case of (A) edge loads only and (B) edge kinematic constraints
only, we give conditions on the end data that insure decaying
solutions (i.e., beamlike solutions vanish identically).

Aside from a rigid body movement, the beamlike solution turns
out to have a relatively large inextensional component, unless the
combined dimensionless material constant I'" given in Eq. (A37)
vanishes.

Appendix: Elaboration of Saint-Venant (Beamlike) So-
lutions

In the Sanders-Koiter theory, the virtual work identity for a tube
of arbitrary cross section extending from x=a to x=>b, under edge
loads only, has the dimensionless form

b
EVW|’ = sj IVWdx, (A1)
a

where
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27
EVW = f {N.U+[N+(3/2)ekM]V
0

+e[(M] +2M* )W — M W' J}dy (A2)

and

27
IVW = f (N(E, +2NE + N,E, + M K, + 2MK + M ,K,)dy.
0

(A3)

Here, the stress resultants and couples satisfy the equilibrium Eqgs.
(5)—(7) whereas the displacements are arbitrary (but sufficiently
smooth); EVW and IVW are mnemonics for external and internal
virtual work.

To put these equations in a form that better reflects the comple-
mentary aspects of the Saint-Venant (SV), the edge zone (EZ), and
the membrane-inextensional (MB) solutions, we first use the
strain-displacement relations (17) to write

W=p(eE,~V*) and W' = p[s(E}', -2E°)+ U*], (A4)

then introduce these expressions into Eq. (A2), integrate by parts,
and finally set

F=N,—e(pM))>, S=N+e{lp(M,+2M*)]"+ (3/2)kM}

(A5)

Z=¢&""p(M,+2M*), Z.=¢&""p(2E'-E}). (A6)

In Eq. (A6), Z is the effective Kirchhoff-transverse shear stress
resultant at a section x= constant (the true shear stress resultant
being M| +M?*), and Z- is the kinematic dual of Z. Thus, Eq. (A2)
can be rewritten as

2w
EVW = f E-Vdy, (A7)
0

where F and V are defined in Eq. (63).

On any cross section of the tube, the dimensionless force T and
moment M (acting about the centroid r=0) are given by Eq. (19).
Using r*=t=n Xk, t®=«n, the periodicity of all functions defined
over the tube’s cross section, and integration by parts, we have

2
f (pM,)**kdy =0, (A8)

0

21 27 2w
J r X (pM,)**kdy = f pM x®® X Kdy = f M tdy,
0 0 0

(A9)

and

2 2
f (pZt)°dy =0, f r X (pZt)*dy =0. (A10)

0 0

Thus, we may write Eq. (19) in the formally simpler form

2w 27
T(0) = f F(0,y;e)dy and M(x) = f r X F(x,y;e)dy.
0 0

(A11)

The differential operator M, defined in Eq. (51), appears in
what follows and has the following properties:
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2w 27
M(®)=0, M(ren)=-1, f M(f)tdy:f fM(t)dy=0.
0 0

(A12)

Note that if we introduce the definitions (A5) into the equilibrium
Egs. (5) and (6) and use Eq. (7) to eliminate N,, the two resulting
equations take the forms

F'+S8°-2e[M(M)]*=0 (A13)

and
S +eM(M;)=0.

Analogous expressions can be written down for the compatibility
equations.

We now modify, extend, and correct parts of the analysis in [3]
concerning SV solutions by assuming that all stress resultants and
couples are, at most, linear in x. In fact, as we shall see, all
unknowns are also, at most, linear in €. Indeed, ignoring terms in
the stress-strain relations that are of the same order as the inher-
ent, unavoidable errors implies that the extensional strains and the
stress couples are independent of €. Thus, we assume that

(A14)

0 1 0 0 1
F=F(y)+xF(y), S=S(y)+e[o(y)+xo(y)],

o 1 (A15)

Maﬁzszﬁ(y) +XMaﬂ(y)‘
(Here, and until further notice, we drop the tag SV to avoid a
cluttered notation.) From Egs. (A13) and (A14), these assump-
tions require that
1 0 0 0 0 0 0 0
F=-8° o0*=2[M(M)]*= o=c+2M(M), c=-constant

(A16)

1 1 1o 1 1
*=2lMM)]*=o=c+2M(M), c=constant (Al7)

1 0
0'=—/\/1(M;), (A18)
and
1
M(M:) =0. (A19)

We further assume that the kinematic duals of F and S have the
form

0 0 1
Fi=F«(y), S«=e[o:(y)+x0:(y)]. (A20)
These assumptions imply the following duals of Egs.
(A16)—(A19)
0 0 0 0 0
—at=2[M(E)] = - ov=c+ 2M(E) (A21)
1 1 [ 1
-0t =2[M(E)]'= - 0o:=c«+2M(E) (A22)
1 0
- o= M(E}), (A23)
and
1
M(E3) =0. (A24)
The general solution of Eq. (A19) is
1 1o
M, =a+ aer, (A25)

y
1 1

where a and a are arbitrary scalar and vector constants. On the

other hand, because we can neglect terms of relative O(e) in the
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stress-strain relations (14), Egs. (A5), (A16), and (A20) allow us
to write

1

M, =~ CypS". (A26)

1
Thus, Egs. (A25) and (A26) are consistent if and only if =0 and
0
S has the periodic form

0

S=>b—bes, (A27)

where b and b are unknown constants and, as in Eq. (48) of [3]

y 27
s=f r(n)dn+(l/27r)f yr(y)dy. (A28)
0

0

1 0
(Note that [37sdy=0.) Because Ey=—AS*=A,y,ber, to within
a permissible relative error of O(e), Eq. (A24) is also satisfied.
Next, the consistency of Egs. (A17) and (A18) requires that

1 0 1 1 0 1

MQM +M;)==c=2M + M;=c(ren) + ct,  (A29)

where ¢ is a constant vector and where we have used it in the
second part of Eq. (A12). But, by Egs. (14), (A16), (A15), (A20),
and (A27)

0 0 0
OM + M3 =4C ppober + (Apy,Fi+ CoppF)®, (A30)
where, as in [3], 26?22256‘?222"'62‘212 and, again, O(g) terms
have been neglected. Because the integral of the right side of Eq.

|
(A30) from y=0 to 27 vanishes, ¢=0. Moreover, because the
0
right side of Eq. (A30) must be periodic and of the form cet, F
and its dual must have the forms

0

F=d+ der + ees, (A31)
0 y
Fi=d +d er —e’es, (A32)
where
Cppe = Apype’ =—4C b (A33)

and d, d, d*, and d* are unknown constants. However, as the tube
can undergo no dislocations,

27 27 0
J F:(y)kdy = f r X F«(y)kdy =0. (A34)
0 (

) 0
See Egs. (20") and (22") of [3]. Because f%”rsdyszX 1, where
B is the area swept out by s(y) as y goes from 0 to 27 and 1 is the

two-dimensional identity tensor in the cross-sectional plane, Eq.
(A34) implies that

d'=0, d"=(B/mHee" where H=1"' X k,
(A35)
H'=-kxI, H'=-kXxI",
and I=17 is given by Eq. (61) with I"! its inverse.
1o

The dual of Eq. (A29) is 2E—E,=c"et which, with terms of
relative O(g) ignored, leads to a second linear relation between e

and e”
Apype + Copme’ =—4A b, (A36)

where we have used the symmetry Ayyj»=A152,. The solution of
Egs. (A33) and (A36) is
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fe.e’h=— 4{A 13224509 + C222C 122 A 1222Coom = Azzzzazzz}b
' AnArm: + CnCoy
in the notation of Eq. (53) of [3]. (Things obviously simplify
tremendously if I'=T"=0.)

If we substitute the second part of Eq. (64), the first and second
parts of (A15), (A27), and Egs. (A31) and (A37) into Eq. (A11),
note that 2A°k=r X t=—(ren)k, where A is the area enclosed by
the Cross section of the tube, and take
0 0
c:—(l/A)f(z)”Mdy in Eq. (A16) to avoid any & dependence in Eq.
(A38) and (A39) below, we find that

T(0) = 27dk + mleb (A38)

and
M(x) = (2Ab + mmeb)k + BI'b — 7k X Te(d +xb). (A39)
Thus,

d=(12mT, b=(124)[M-med 'eT(0)], b= (1/mI'T(0),

(A40)

and

d +xb = (1/m)He[M(x) — (B[/mI'eT(0)]. (A41)

where T=keT(0), M =keM(0)=keM(x), and, as in Eq. (63) of
(3],

2
m = (1/m) f s(y)r(y)en(y)dy. (A42)

0

From Eq. (A5), N,.=F+0(g) and N=S+0(g) for SV solutions,
so that in view of Egs. (A15), (A16), and (A20), the strain-stress
relations (13) for SV-solutions may be given the simplified, ex-
plicit forms

0 0
— L]
E, Any —2Axn5n —Cuom, F(y)o xS*(y)
E |=|-Amn 2Apn Cop S(y)
E, A —2A11 —Cin 0
Fi(y)

(A43)

By Egs. (A27), (A31), (A32), (A35), and (A36), these expressions
become

E,=Agyo[d +1e(d + xb)] = 24 225(b + seb) — (BI'"*/11) Cp5oreHeb
(A44)

E=—=A»)[d+re(d+xb)+I'seb]+2A,,5,(b —seb)
— " C ppgeleb (A45)
and
E,=A p[d+re(d +xb) + I'seb] — 24 ,5,,(b — seb)
— @l C|18eleb
=[(172m)A 12k + (T"Cy15 + TA 1) + 241150 ] T(0)

+ [— (I/A)Alllzk + (1/7T)A 11 lzr.H]OM(X)

= A"(y)eT(0) + B*(y)eM(x), (A46)
where
g = (1/m)[s — (B/m)reH]oI"! (A47)
and
h = (s/7+m/2A)eI"". (A48)
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Three of the other variables that appear in the external virtual
work (A7) have the forms

M, =[(12)C} 0k + (T'C} 199 = TA} 15,)8 + 2C 15 ]eT(0)
+[= (1/A)C} 1ok + (1/) C poreH]eM (x)

= A(y)eT(0) + B(y)eM(x), (A49)

2E® - Ej == [2(TA 30+ " Ci0)g® + (4A 1215 + A 12)h*JeT(0)
- (2/7T)A 1222t0HOM()C)

= A"(y)eT(0) + B (y)eM(x), (A50)

M +2M°=[2(0Cyp —T7A 008" + (4CT212 + Clez)h.]'T(O)
+ (2/7) ClypoteHeM(x)

= A(y)eT(0) + B(y)eM(x). (A51)

Likewise, note from Egs. (A15), (A27), (A31), and (A38)-
(A41), that the second part of Eq. (64) may be given the form

0 0
F(x,y;e) =[A(y) + A (y)]eT(0) + [B(y) + B, (y) JeM(x),
(A52)
where

0 0
A=(1/2mkk + Tkg —th, B=(1/m)kreH + (1/24)tk

(A53)

and

A, =t[Cypo(klm = 1Ak + 2(T'Clypy — T7AT 1)) M(g)

— (27AY)Cppymel ! +4C), ,M(h)],
B} } (A54)
B, = t{(27/A)C 15 (1/A = kI T)k + (2/7) C | H e M(1)].
The final ingredient in the expression for the external virtual

work (A7) is the dimensionless displacement. To put this into a
useful form, we first set

0 0 0 0 0
U=U@k+[V(y) —xU(y)]t(y) + p(r)[V*(y) = xU**(y) In(y)

+eu(x,y), (A55)

0 0 0

where U=c—cjer and V are inextensional displacements with V
chosen so that, by the third part of Eq. (18) and Eq. (A32)
0
[M(V)]*=d"er —e"es.

With the aid of Egs. (A35) and (A40) the 27r-periodic solution of
this equation may be verified to be

(A56)

0 y
V==cr(y)en(y) + cyet(y) = It(y)e f n(7)G(7)dneT(0),
0

(A57)

where ¢, and ¢, are constants associated with a rigid body move-
ment, G®*=g, and, as in Eq. (54) of [3],

y 2w
v=f S(n)dn+(1/2w)f ys(y)dy, (A58)
0

0

the constant term in the above equation being chosen so that
Svdy=0.
Thus, the inextensional component of U has the form
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0 ¥
U=c +¢,+xe;+(ck+k X ¢p) X r—l"*f n(7)G(7)dneT(0)
0

= W,(x) + @, X r+AT(0). (A59)

In Eq. (A59), the constants vectors ¢; and ¢, lie in the t-n plane.
and the first two terms in the last line are rigid body movements.
More generally, Ladevéze has shown [13] that it is possible to
0
write U-U as

u=w(x)+ P(x) Xr+A(y)eT(0) + B(y)eM(x),

where w and ¢ are a beamlike displacement and rotation, respec-
tively, and A and B are material tensors. To find the latter, we first
use Egs. (17) and (A60), and the overall moment equilibrium
condition M’ (x)=-k X T(0), to obtain

(A60)

W =w'(x) + [k X @' (x)]or - [keB(y) X kJoT(0) = E,,
(A61)

where w=Kkew. A comparison of the middle expression in Eq.
(A61) with the right side of Eq. (A44) yields

W' = Agyyad = 2A1205b + Cob = (1/271) Anysr T+ [(1/A)A 1 70,m
+ (1/m)CleI 'eT(0) = (1/A)A 1 50,M (A62)
and, by Eq. (A35),
(kX ¢')xXk=¢'-¢'k
=[Aypo(d + xb) = Cppod” + (1/7)Ceb] X k
=—[(4B/7*)A 1, H + k X CleI™'T(0)
— (1/m)A 0k X HeM(x), (A63)

where ¢p=Kke¢p and C and C are, respectively, a constant vector
and tensor. By the third part of (A40),

keB = B“(y)k - (1/77)(2A1222$ +reC + C).H

Still to be determined are C, C, A, B;;=KkeBek, and teB.
Next, inserting Egs. (A35), (A38), (A39), and (A47) into the
third strain-displacement relation E,=v®+kw, we have

(A64)

Aq1pold + (d + xb)er + Tbes] — 24 15(b — bes) + 7L "C, 2sbeleg
=te{A®(y)e(27dk + 7leb) + B*(y)e[ (2AL + Tmeb)k + BI'b
— 7k X Le(d + xb)]}. (A65)
Thus,

A =KkeA + (1/2m)A | 1ork + (1/A)A | ;;rmel ™ — (B/7?)(TA {120
+T7°Cao)tseHoI ™ + (1/7) (A 120 + 241115+ T C ) tvel ™!
+tA (A66)

and
B =K[B,,(y)k — (1/7) (24, 258 + reC + C)eH] — (1/4)A,,,rk
+ (1/m)A | | potseH + B, (A67)

where keA, B, the constant vectors A, B, and C, and the con-
stant tensor C are yet to be determined. However, the terms aris-
ing from A and B, representing rigid body movements, may be
absorbed into the constant ¢, in Eq. (A57) and so ignored.
Finally, we use the second part of Eq. (17), Eq. (A35), the third
part of (A40), and Egs. (A45), (A55), (A59), and (A67) to write

v =t(y)ew'(x) + 2A°(y) @' (x) + A{ 2 bes = 2E — u®,
(A68)
where, as in Eq. (62) of [3],
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A(y) = (1/2)k.fy r(n) X t(n)dn, A=AQ2m (A69)
0

Substituting Eqs. (A45), (A59), (A66), and (A67) into the right
side of Eq. (A68), using Eq. (A41) and the equilibrium condition
M’ (x)=—k X T(0), and cancelling some terms, we obtain

t.w/(.x) + ZA.(y) ¢/ (X) + Allzzbos
==2A1p00d =271 (T'A 555 + F*Clzzz)g'IOb
+ 4A1212(b - boS) + to[(l/’)T)CoHoM(x) -k X qﬂ
— keA®.T(0) - BY,(y)M. (A70)

To determine ¢, we integrate both sides of Eq. (A70) from y
=0 to 2. Noting Egs. (A40), and (A47), we find that

@' = Q2mA)(2A 512D — A1xpd)
=— (1/A)A 35T — (27/A)A 5, ,mel ' T(0)

+ (27T/A2)A1212M. (A71)

This relation combined with Eq. (A63) gives an expression of the
following form for the beamlike bending strain:

Q= ¢, = AMT'T(O) + AMMOM(X), (A72)
where
Apn = Qa/A?)A 11Kk — (1/)Agpk X T X k. (A73)

An expression for Ayt will be given shortly.

Next, to determine I', the extensional-shear strain in the overall
beamlike stress-strain relations, we multiply both sides of Eq.
(A70) by s and integrate from y=0 to 2. Introducing the
2r-periodic function

P=A>»)-(RmA
and noting the following integrals:

2w 27 27
J stdy = — 1, f sP*dy =~ (m/2)m, J ssdy = 7d,
( (

) 0 )

(A74)

2m
f sgdy = [J+ (B/m)’k X H]oI"!, (A75)
0
27 2m
f s(A®) dyek = D, J sB}dy =D,
0 0
we obtain an expression of the form
I'=w +k X ¢=AppreT(0) + ApyeM(x). (A76)

When we impose the conditions that ATT=A¥T and ATMzAI{/[T’
we find that C=—(2B/m)A4,H, D=0, and C=D=0. Thus, in
view of Eq. (A62)

Arr = (1727)Agppkk + (1/A)A 5oy (kmeIl ™! + T 'emk)
+(4/mA I o[ + (77 + 24 mm oI ™!
+ (1A 1o edeI ™ + (2/7) (T A 120y + T Crann) T e[ J
+(B/m)k X T X kJoI"! (A77)
and
Ay =— Im[(7A)?A 1omel 'k + (B/m)A 15,H].
(A78)

Note that the last three lines of Eq. (A77) define a shear coeffi-
cient tensor as opposed to a shear coefficient scalar that one often
sees introduced in theories for isotropic shear deformable beams.

Returning to Eq. (A70) and equating similar terms, we obtain
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koA = (2/A)A 19, P(y)k + (47/A%)A 1y ;mel ™ P(y) — (1/7)(4A 51
+ A1) Vel L+ (2/7) (T A y00 + T C i) [(B/77)seH — v]eI ™!
—reAry (A79)

and

By = 2mAY)A po[rel lem — 2P(y)]. (A80)

The exact beamlike strain-stress relations (A72) and (A76) have
now been determined completely.

A.1 The Generalized Displacement-rotation

Following the definition given by Ladevéze [13], we first use
Eqgs. (65) and (A8) to set

2T
[5,55V], = f (F-VV—F5V.V)dy. (A81)

0

To define a generalized displacement and rotation W and @ we
use Egs. (A8), (A46), (A49)—(A52), (A59), and (A60) to write, in
an obvious notation,

V= W,(x) + ew(x) + [@;+ £(x)] X r + A(y) - T(0)

+B(y) - M(x) (A82)
and
0 0
FV=A(y) - T(0) + B(y) - M(x), (A83)
0 0
where A, A, B, and B are 4 X2 matrices. Then,
[5,55V], = T(0)e[ W,(x) + ew(x) — Vi’(x;e)]
+ M@)e[®, + e(x) - D(x;2)], (A84)
where
_ 27 g
W= | [AT(yie) V(xyie) =AT(yie) - F(x.y:e)ldy
0
27
= f [(A+eA)TsV-Fe (A +5A)+e”(Z.A-ZA")
0
+ szp(Ey& - M A"]dy (A85)
and

B 27
> = f [B'(yie) - V(x.yie) = B(v:e) - Flx,y:e)ldy
0

27
:f [(B+eB,) sV —eFe+B+e¥2(Z.B-ZB")
0

+ szp(E)B~ - M B)dy. (A86)

Noting that [sgy,s5y],=0 and following the same arguments as
in[14], we can show that

V§’=W,+ ew=WS" and (I=>=<IJ,+ sq’):(i)sv.
Thus, by Egs. (A55) and (A59), we also have

(A87)

T=c"' W +kX®) =T and Q=¢"'® =05,
(A88)

so that the beamlike strain-stress relations Egs. (A72) and (A76)
developed for the special class of Saint-Venant solutions are exact
for any solution of the shell equations.
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Theory and Period Doubling
Cascade

The aim of the present paper is to evaluate the complex oscillatory behavior, i.e., the
transition toward deterministic chaos, in damaged nonlinear structures under excitation.
In the present paper (Part I), we show the developed theoretical approach and how it
allows us to capture not only the super-harmonic and offset components (predominant for

moderate nonlinear systems) but also the subharmonics of the structural dynamic re-
sponse, describing complex and highly nonlinear phenomena, like the experimentally
observed period doubling. Moreover, a period doubling cascade with a route to chaos
seems to emerge from our considerations. [DOI: 10.1115/1.1934582]

1 Introduction

Vibration-based inspection of structural behavior offers an ef-
fective tool of non-destructive testing. The analysis of the dy-
namic response of a structure to excitation forces and the moni-
toring of alterations which may occur during its lifetime can be
employed as a global integrity-assessment technique to detect, for
example, play in joints or the presence of a crack. Indeed it is well
known that, in the case of simple structures, crack position and
depth can be determined from changes in natural frequencies,
modes of vibration or the amplitude of the forced response.

The damage assessment problem in cracked structures has been
extensively studied in the last decade, highlighting that the vibra-
tion based inspection is a valid method to detect, localize, and
quantify cracks especially in beam structures. Dealing with the
presence of a crack in the structure, previous studies have dem-
onstrated that a transverse crack can change its state (from open to
closed and vice versa) when the structure, subjected to an external
load, vibrates. As a consequence, a nonlinear dynamic behavior is
introduced.

In the past many studies have illustrated that a crack in a struc-
ture such as a beam, may exhibit nonlinear behavior if it is open
during part of the response and closed in the remaining intervals.
This phenomenon has been detected during experimental testing
performed by Gudmundson [1] in which the influence of a trans-
verse breathing crack upon the natural frequencies of a cantilever
beam was investigated. The main result obtained was that the
experimentally observed decrease in the natural frequencies of the
beam due to the presence of the crack was not sufficient to be
described by a model of crack which is always open. Therefore, it
must be concluded that the crack alternately opened and closed
giving rise to natural frequencies falling between those corre-
sponding to the always-open and always-closed (e.g., integral)
cases. In fact, if an always-open crack is assumed in the analysis
of a beam with a so-called breathing crack, which both opens and
closes during the time interval considered, the reduced decrease in
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the experimental natural frequencies will lead to an underestimate
of the crack depth if determined via a test-model correlation
approach.

Friswell and Penny [2] have simulated the nonlinear behavior
of a beam with a breathing crack vibrating in its first mode of
vibration through a simple one-degree-of-freedom model with bi-
linear stiffness. The analysis of the fast Fourier transform and the
response to harmonic loading, obtained by numerical integration,
demonstrates the occurrence of harmonics in the response spectra
which are integer multiples of the exciting frequency.

Krawczuk and Ostachowicz [3,4] presented an analysis of the
forced vibrations of a cantilevered beam with a breathing crack, in
which the equations of motion are solved using the harmonic bal-
ance technique. The periodically time-variant beam stiffness is
simulated by a square wave function with a fundamental fre-
quency equal to the forcing term frequency. According to [2] this
research has shown that, when a breathing crack is present in a
beam, higher harmonic components in the frequency spectrum of
the response are generated if excited by a sinusoidal forcing func-
tion, indicating that the structure behaves nonlinearly.

Crespo, Ruotolo, and Surace [5] have solved and discretized the
nonlinear equation of motion of a beam with breathing crack us-
ing the finite element method. According to the cited papers, the
main assumption has been that the crack can be either fully open
or fully closed during the vibration.

In [6] the vibrational response of a cantilevered beam with clos-
ing crack to harmonic forcing has been analyzed and its dynamic
behavior characterized by using the so-called higher order fre-
quency response functions.

Carpinteri and Carpinteri [7] highlight how in reality the crack
opening and closing are continuous phenomena, i.e., the crack can
be even partially open (or closed) as a function of the cracked
element curvature.

The aim of this paper is to develop a coupled theoretical and
numerical approach to evaluate the complex oscillatory behavior
in damaged nonlinear structures under excitation. In particular, we
have focused our attention on a cantilever beam with several
breathing transverse cracks and subjected to harmonic excitation
perpendicular to its axis. The method, that is an extension of the
super-harmonic analysis carried out by Pugno, Surace, and Ruo-
tolo [8] to subharmonic and zero frequency components, has al-
lowed us to capture the complex behavior of the nonlinear struc-
ture, e.g., the occurrence of period doubling, as experimentally
observed by Brandon and Sudraud [9] in cracked beams. The first
results of this approach have been presented by Carpinteri and
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Pugno in [10]. The method described assumes, as previously done
in [10] and according to [7], that the cracks open and close con-
tinuously instead of instantaneously, as suggested by the experi-
ments. As a consequence, the cracks are not considered to be
either fully open or fully closed, but the intermediate configura-
tions with partial opening have also been taken into account.

The period of the response is not assumed a priori equal to the
period of the harmonic excitation, as classically supposed (ab-
sence of subharmonic components). This has allowed us to cap-
ture the complex behavior of the highly nonlinear structure, e.g.,
the occurrence of period doubling.

A pioneer work on period doubling was written in 1978, when
Mitchell Feigenbaum [11] developed a theory to treat its route
from the ordered to chaotic states. Even if oscillators showing the
period doubling can be of different nature, as in mechanical, elec-
trical, or chemical systems, these systems all share the character-
istic of recursiveness. He provided a relationship in which the
details of the recursiveness become irrelevant, through a kind of
universal value, measuring the ratio of the distance between suc-
cessive period doublings, the so called Feigenbaum’s delta [12].
His understanding of the phenomenon was later experimentally
confirmed [13], so that today we refer to the so-called Feigen-
baum’s period doubling cascade. However, even if the period
doubling has a long history, only recently it has been experimen-
tally observed in dynamics of cracked structures [9]. The aim of
our study is the understanding of such phenomenon that, accord-
ing to our model, seems to be ruled by the breathing of the cracks
during the oscillation of the structure.

In addition to the super-harmonics, the analysis has systemati-
cally emphasized a presence of an offset (zero frequency compo-
nent) in the structural response also for weak nonlinearities. Fur-
thermore, subharmonic components appear in the response of the
structure for stronger nonlinearities, leading, in particular condi-
tions, to the period doubling.

The differential nonlinear equations governing the oscillations
of the continuum structure, discretized by the finite element
method, have been analyzed by means of the Fourier transforms
or Fourier trigonometric series coupled with the harmonic balance
approach. This allows us to obtain a nonlinear system of algebraic
equations, easy to be solved numerically. In the numerical ex-
amples, the phenomenon of the period doubling is discussed, with
an eye to the phase space trajectories.

2 Theoretical Continuum Approach

Let us consider a multicracked cantilever beam, clamped at one
end and subjected to a dynamic distributed force p (with rotating
frequency w). Modeling the breathing cracks as concentrated non-
linear compliances (or stiffnesses) (in [14] linear stiffnesses are
assumed), the equation of the motion of each integer beam seg-
ment, is the classical equation of the beam dynamics. Further-
more, the boundary conditions between two adjacent segments are
represented by the continuity of the transversal displacement and
of its second and third spatial derivatives (proportional to the
bending moment and to the shearing force respectively), as well
as by the compatibility with the crack. This implies that the dif-
ference in the rotations between the two adjacent sections must be
equal to the rotation of the connecting concentrated nonlinear
stiffness. The problem formally can be written as

#q(z,1) 7q(z,1)
A +EI
P08 a7t

=p(z,1) for z; <z <zyy;

whereas for z = z;:
q9(z) =49, ") =4"E)). ¢"(z) =4" ), ') - q' (&)
_El'()
klq'(z)]
where p is the density, A the cross-section area, ¢ the transversal

(1)
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displacement, E the Young’s modulus, and / the moment of inertia
of the beam. k; is the nonlinear concentrated rotational stiffness (a
function of the rotations ¢’(z7)) of the crack placed at z; (the
symbol prime denotes the derivation with respect to z). We will
discuss the form of the nonlinear stiffness in the next section,
according to the experimental evidence.

Equation (1) can be formally solved by applying the Fourier
trigonometric series searching a solution in the form

400
1 .
4z 1) = =2 c,(2)e®, )
V2T eco

where ¢,(z) are unknown functions and P=0@27/w=0P is the
period of the response, assumed a priori to be different from the
period P of the excitation (describing a so-called complex behav-
ior, thus we call ® complexity index). On the other hand, if the
period of the response tends to infinite, i.e., ® — oo (nonperiodic
response, i.e., chaotic deterministic behavior), it is well-known
that Eq. (2) becomes formally a Fourier transform, i.e.

[
q(Z,Z)z /_f elwa(va)dw’ (3)
N2 ) .,

where Q(z, w) is the new unknown function. Thus, an approxima-
tion of the continuum spectrum in the response ¢(z,7) of Eq. (3) is
represented by the discrete spectrum of Eq. (2) if a sufficiently
large complexity index © is considered. In addition, instead of the
continuum approach of Eq. (1), a discretization of the system
could also be considered. These discretizations allow an easier
solution of the problem, as we will point out in the next section.

3 Theoretical Discrete Approach

By discretizing the structure with the finite element method [8],
Eq. (1) can be rewritten as

[MJ{g} + [D}g} +[K{g} + 2 [AK 1A ({ghig} = {F}, (4)

where [M] is the mass matrix, [D] the damping matrix, [K]
+3,[AK™] the stiffness matrix of the undamaged beam, and
[AK] is half of the variation in stiffness introduced when the
mth crack is fully open (see the Appendix and [8]). {F} is the
vector of the applied forces (with angular frequency w) and {g} is
the vector containing the generalized displacements of the nodes
(translations and rotations). According to this notation, /' ({¢}) is
between —1 and +1 and models the transition between the condi-
tions of mth crack fully open and fully closed. Assuming that this
transition is instantaneous and hence takes place discontinuously,
F™({g}) is a step function and has the sign of the curvature of the
corresponding cracked element. With this simple model of crack
opening and closing, " ({g}) can thus only be equal to —1 or +1.
On the other hand, in the present investigation as in the previous
[8], 7" ({g}) is assumed to be a linear function of the curvature of
the corresponding cracked element. In other words, the cracks are
not considered fully open or fully closed, as the intermediate con-
figurations with partial opening are also taken into account. Thus,
the stiffness varies continuously between the two extremes of un-
damaged or totally damaged beam (fully open cracks), rather than
stepwise. The solution for the elements of the {g} vector e L? (i.e.,
|g;]* can be integrated according to Lebesgue) can be found by
means of Eq. (3), or by the approximation of Eq. (2), that for our
discrete system can be rewritten as
N
w w

qi= % (Aijsinjat + B;;cos j@t), (5)
in which the complexity integer ® must be a positive integer, to
take into account not only the super-harmonics (and offset) but
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also the subharmonic components of the dynamic response and
theoretically N=2. As previously discussed, this means that the

response could have a period P=0 P that is not a priori coincident
with the period P of the excitation. A value for ® tending to
infinite (Fourier trigonometric series become Fourier transforms)
describes a transition toward a chaotic (nonperiodic) response.

It is interesting to note that, even if the trigonometric series (2)
converges, it could not be a trigonometric Fourier series. In fact,
the Fischer-Riesz theorem affirms that it is a fourier series if and
only if =7(|A;|*+|B;?) converges. In this case, the Parseval
equation

” 5 (+Pr
2 (AP + B == |qi(1)|dt, (6)
j=0 PJ_p,

P2

obviously implies

limA;; = limB;;=0. (7)

Jjoo j—o®e

The last relationships allow us to consider a finite number N in
Eq. (5), large enough to provide a good approximation. The func-
tion /" ({q}) is considered linear versus the curvature of the cor-
responding cracked element, i.e.,

qu - th

f{m)({q}) = |max = Am(qu - (th) P (8)

| m — 4my,
where the numerator represents the difference in the rotations at
the ends of the corresponding cracked element and the denomina-
tor is the maximum absolute value that can be reached by this
difference: consequently, the generic component of function
{g"™ =" ({g){g} (that appears in Eq. (4)) can be expressed as

8" = Ay, — G- )

The same concepts argued for the ¢; components can be now
applied to the gl(,m), ensuring that they can be developed in a trigo-
nometric Fourier series and can thus be put in the approximate
form

N

g™ = 2 (C,(-}")Sinj%’+Df~}’”cosj%;), (10)
Jj=0
with
; w

== &"sin|jr)dt, (11)

0

2 (P
Dy == f g?"‘)(t)cos(jgt>dt. (12)

Inserting relation (9), in its explicit form according to Eq. (5) for
the degrees of freedom i, m;,, and my, into Egs. (11) and (12) and
developing the integrals, gives the following expressions:

{(Amkjl - Amhj])Bijz + (B, j, — Bmhjl)Aijz}

A
(m) _ m
=5 .2, .
J1:2:1t)2=)
A, S
4+ 2
2

Jvdaiii ==t

* {(Amkjl - Amhfl)Bijz - (Bmkj] - BmlJl)Aijz}’
(13)
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A
D=t >
Jid2iv =i
Ay
4
oy

JrJaii—ia=%]

- (Aml:jl - Amhjl)AijZ + (Bmkjl - B’"rJl)Bijz}

* {(Amkj] - Amhjl)Aijz - (Bmkjl - Bmhjl)Bij2}~

(14)

As the nonlinearity of the components of {g"}=F"({g}){q} were
expressed in a form analogous to that of the components of {g}, as
indicated by Eq. (10), it is possible at this stage to apply the
harmonic balance method (Egs. (5) and (10)—with Egs. (13) and
(14)—must be introduced in Eq. (4) and the terms of the harmon-
ics of the same order must be “balanced”), which leads to N
different systems of nonlinear algebraic equations. We find the
following solution:

fa? je
K]-“grM) - 40ID] {{A_i}}

. 202
Jjo jw {B;}
—|[D K|-—M
2] K- L)
[AK™]  [0] {cim
={F}- J 1
) 2[ o1 akmy) oy o
where j=0,1,...,N and for each vector we have {Vj}T
={V1;.Va;,....}". In addition
Fij=Fd¢0;, (16)

p being the node position corresponding to the point where the
sinusoidal force is applied.

Each system can be solved numerically using an iterative pro-
cedure interrupted by an appropriate convergence test when the
relative j error for the {4} and {B;} vectors becomes lower than a
specified value; it is a function of the kth iteration and has been

deﬁned as
/ H {{A i }
{B]} k-1 '

ey = H{{A’}} —{{A’}} (17)
B ) UB} i
The procedure consists in determining the unknowns A;; and Bj;.
It is very interesting to note that, assuming the coefficients
Cff”), Dl(.]’.”) to be zero at the first step, implies to force also the
subharmionic components to be zero (see Eq. (15)). So, differently
from the super-harmonic analysis [8], we have to start with non-
zero values for the coefficients Cl(.'."), Di.j’."). To obtain good initial
values for these coefficients, we have considered as a zero step a
super-harmonic analysis (®=1); in this case, we can determine

the unknowns A;; and B;; starting with zero coefficients CE;"), Dl(,',”)
and, by Egs. (13) and (14), we have their initial values for the
subharmonic analysis. The solution thus obtained is used to deter-
mine the known vector of the right hand-side of Eq. (15). The
procedure is repeated until the desired precision is achieved and
coefficients A;; and B;; are found, while Eq. (5) is used to deter-
mine the components of the approximate vector, which satisfies
the nonlinear Eq. (4), giving an approximated solution of the con-
tinuum system described in Eq. (1).

4 Period Doubling Cascade

We can consider two different numerical examples: a weakly
nonlinear structure and a strongly nonlinear one. Only in the latter
case, the so-called period doubling phenomenon, experimentally
observed by Brandon and Sudraud [9], clearly appears. The beam
here considered is the same as that described in the mentioned
experimental analysis. It is 270 mm long and has a transversal
rectangular cross section of base and height, respectively, of 13
and 5 mm. The material is (UHMW)-ethylene, with a Young’s
modulus of 8.61X 108 N/m? and a density of 935 kg/m3. We
have assumed a modal damping of 0.002. It is discretized with 20
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Fig. 1

(a) Structure I—Damaged structure and characteristics of the excitation (a=2.4 mm, F=5N, f=w/27=25 Hz). (b) Structure

I—Time history of the free end displacement and of the applied force. (c) Structure I—Relative error as a function of the iteration
number, for each jth harmonic (j=0,1,...,16). (d) Structure I—Zero- (offset), sub- and super-harmonic components for the free end

displacement (i.e., \s“A§OI.+B§OI. for j=0,1,...,16). (e) Structure |I—Dimensionless phase diagram of the response (free-end

displacement).

finite elements. We have found that a complexity index ®=4 and
N=16 give a good approximation. For larger values of ® and N,
substantially coincident solutions are obtained. The first natural
frequency of the undamaged structure is f,=10.6 Hz.

For each of the two considered structures (Figs. 1(a) and 2(a))
it is shown the time history of the applied force and of the free-
end displacement (Figs. 1(b) and 2(b)), the relative errors as func-
tions of the iteration number (Figs. 1(c) and 2(c)) and the zero-,
sub-, and super-harmonic components for the free-end displace-
ment (Figs. 1(d) and 2(d)). In Tables 1 and 2, the frequency com-
ponents are considered separately as sin and cos components.

In a hypothetical linear structure, the structural response is lin-
ear by definition with obviously only one harmonic component at
the same frequency of the excitation.

514 / Vol. 72, JULY 2005

In the weakly nonlinear structure of Fig. 1(a), the response
converges and it appears only weakly nonlinear, as depicted in
Fig. 1(b). The relative errors, shown in Fig. 1(c), tend to zero or
by definition are equal to 1 if related to the harmonic components
identically equal to zero. The harmonic components in the struc-
tural response are the zero-one (presence of a negative offset in
the displacement of the free-end, downward in Fig. 1(a)) and the
super-harmonic ones (Fig. 1(d) and Table 1). No subharmonic
components can be observed. The corresponding phase diagram of
the response is shown in Fig. 1(e). Due to the weak nonlinearity
the trajectory in the phase diagram is close to an ellipse. The
diagram is nonsymmetric as the spatial positions of the cracks
(placed in the upper part of the beam). The trajectory is an unique
closed curve since here the period of the response is equal to the
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period of the excitation. An increasing of the nonlinearity will
distort the trajectory as we will show in the next example.

In the strongly nonlinear structure of Fig. 2(a) the response
converges (Fig. 2(c)) and the nonlinearity increases, as depicted in
Fig. 2(b). The harmonic components in the structural response are
the zero one, the super harmonic as well as the subharmonic ones
(Fig. 2(d) and Table 2). It should be emphasized that a strong
presence of the component causes the period doubling of the re-
sponse, i.e., the w/2 component. The free-end vibrates practically
with a period doubled with respect to the excitation. A non-
negligible component at w/4 is observed too, representing a route
to chaos through a period doubling cascade.

Journal of Applied Mechanics

The corresponding phase diagram of the response is shown in
Fig. 2(e). The trajectory is a unique closed curve since the re-
sponse is still periodic; it is composed by multiple cycles since
here the period of the response is not equal to the period of the
excitation. The distortions in the trajectory are consequences of
the presence of the super- or subharmonics, as well as the multiple
cycles emphasize the presence of the subharmonics (four cycles
are due to the component w/4), i.e., the presence of a complexity
with associated route to chaos. Also in this case, the diagram is
nonsymmetric as the spatial positions of the cracks.

An extensive parametrical investigation can be found in the
companion paper.

JULY 2005, Vol. 72 | 515



Table 1 Structure I—Zero- (offset), sub- and super-harmonic sin- and cos- components [mm],
for the free end displacement (i.e., Ayjs Bogpy for j=0,1,..., 16)
Harmonic Sin Cos Amplitude
0 0 —0.5472 0.5472
wl4 0 0 0
/2 0 0 0
3/4w 0 0 0
® —50.7971 —0.1414 50.7973
54w 0 0 0
32w 0 0 0
7/4w 0 0 0
2w 0.0039 0.1688 0.1689
9/4w 0 0 0
52w 0 0 0
11/40 0 0 0
3w 0.0745 —0.0008 0.0745
13/40 0 0 0
72w 0 0 0
15/4w 0 0 0
4w 0.0001 0.0035 0.0035

5 Conclusions

The proposed approach extends the theory proposed by Pugno
et al. [8] to (offset and) subharmonic components. We have dem-
onstrated that our approach corresponds to an approximated solu-
tion of the continuum spectrum of the response of the continuum
system. The method has allowed us to catch complex phenomena,
i.e., transition toward deterministic chaos, like the occurrence of a
period doubling, as shown in the numerical examples and experi-
mentally observed in the context of cracked beam by Brandon and
Sudraud [9]. In this analysis, of crucial importance appears the
complexity index ©. For higher values of ® we have to increase
also N (e.g., N=02), so that the complexity of the numerical
simulations considerably increases. On the other hand, larger val-
ues of O allow us to catch higher structural complexity, as em-
phasized by multiple cycles of the trajectory in the phase space
diagrams.

From the reported numerical examples (for an extensive nu-
merical parametrical investigation see the companion paper), we
can affirm that if the nonlinearity is zero, the structural response
(i.e., Eq. (5)) can be obviously caught with N=O=1. If a weak
nonlinearity is considered, only offset and super-harmonic com-
ponents can be observed in the structural response. As a conse-

quence, for this case, it can be easily caught using classical Fou-
rier series (®=1) with N> 1 (and large enough, in the sense that
Response(N) =Response(N’ > N)). If the nonlinearity becomes
stronger, offset, and super-harmonic components, as well as sub-
harmonic ones, can be observed in the structural response. As a
consequence, in this case, it can be caught using a complex index
O larger than 1 (®>1 and N> 1 large enough, in the sense that
response(®,N) =response(0®’ > @ ,N’'>N)). Theoretically, val-
ues of O tending to infinity (Fourier series become Fourier trans-
forms, with theoretically N tending to infinity too) allow us to
catch a route to chaos through a period doubling cascade, that here
would imply a nonperiodic dynamic response. These consider-
ations are summarized in Table 3.
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Table 2 Structure ll—Zero- (offset), sub- and super-harmonic sin- and cos-components [mm],
for the free end displacement (i.e., Ay, By, for j=0, 1,..., 16)

Harmonic Sin Cos Amplitude
0 0 —3.2415 3.2415
wl4 0.5278 —0.5708 0.7774
w/2 9.9741 7.6932 12.5964
3/4w —0.0201 —1.0667 1.0669
) —30.2576 —0.3138 30.2592
5/4w 0.151 0.3043 0.3397
3/2w 0.2172 —0.0064 0.2173
74w —0.1981 —0.2078 0.2871
2w —0.1384 0.3512 0.3775
9/4w 0.421 0.1979 0.4652
52w —0.1315 —0.3162 0.3425
11/4w —0.5769 0.1225 0.5898
3w 0.5754 0.1795 0.6027
13/4w 1.7804 —2.4618 3.0382
720 0.6258 —0.296 0.6923
15/40 —0.038 —0.7144 0.7154
4w —0.0078 0.0539 0.0545
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Table 3 Nonlinearity, Complexity index ® and number N of
terms in the Fourier series

Nonlinearity Zero Weak Strong Very strong (chaos)
(€] 1 1 >1 0
N 1 >1 >1 o
Appendix

The mathematical model used for the considered beam of Le-
onhard Euler (1707-1783) with several transverse one-side non-
propagating breathing cracks is based on the finite element model.
According to the principle of Ademare Jean-Claude Barré de
Saint-Vénant (1797-1886) the stress field is influenced only in the
region adjacent to the crack. The element stiffness matrix, with the
exception of the terms which represent the cracked element, may
be regarded as unchanged under a certain limitation of the element
size. The additional stress energy of a crack leads to a flexibility
coefficient expressed by a stress intensity factor derived by means
of the theorem of Carlo Alberto Castigliano (1847-1884) in the
linear elastic regime.

The cracked element is shown in Fig. 3.

Neglecting shear action (Euler beam), the strain energy of an
element without a crack can be obtained as

1
1 1
WO = — [ (M + Pz)2dz=—(M?+ P2PP/3 + MPI?),
2E1 ], 2EI

(A1)

where E is the Young’s modulus of the material constituting the
finite element, /=bh3/12 is the moment of inertia of its cross
section, having base b and height &, and M and P are the gener-
alized forces acting at the ends of the finite element of length /.
The additional energy due to the crack is

wi=p f (K (x) + K5()VE" + (1 + v)K3,(x)/E]dx, (A2)
0

where E’=E for plane stress, E'=E/(1+v) for plane strain and v

is the Poisson’s ratio. Kj ;; are the stress intensity factors for

opening, sliding and tearing-type crack, of depth a, respectively.
Taking into account only bending

w=b J (K () + Kpp(0) T + Kiyp(x) VE'dx,  (A3)
0
with
Ky = (6MIbh2) maF (s)
Kp= (3PUBR)maF (s),
Kyp = (PIbh)\maF (s) (A4)

where s=a/h and
F(s) = \2/(ars)tan(rs/2)
x{0.923 + 0.199[ 1 — sin(rs/2)*]}/cos(rs/2)

Fi(s) = (35 = 252)(1.122 = 0.5615 + 0.085s2 + 0.185%)/V1 — 5.
(AS)

The term cl(.]?) of the flexibility matrix [C(eo)] for an element
without crack can be written as

FWO
0= ik=12 P/ =P,P,=M. (A6)
aP, I P,
The term cgi) of the additional flexibility matrix [Cil)] due to the
crack can be obtained as
Fw
W=—— ik=12 P/ =P,P,=M. (A7)
aP,d P,

The term c¢;; of the total flexibility matrix [C,] for the damaged
element is

cu=cif +ei. (A8)
From the equilibrium condition (Fig. 3)
(P; M; Piyy M) =[TI(Pyy M), (A9)
where
[T]z[—l -1 1 O]T. (AL0)
0 -1 01

Applying the theorem of Enrico Betti (1823-1892), the stiffness
matrix of the undamaged element can be written as

(K ]=[TIcO1 17", (A11)
or
12 6 -12 6l
EIl 61 4P -6 2P
K,]=— , Al2
(K] Bl-12 -6/ 12 -6l (AlL2)
6l 2P -6l 4P

while the stiffness matrix of the cracked element may be derived
as

(K] = [TICI'[TT", (A13)

In order to evaluate the dynamic response of the cracked beam
when acted upon by an applied force, it is supposed that the crack
does not affect the mass matrix. Therefore, for a single element,
the mass matrix can be formulated directly

156 221 54 -—13]
(1=, ] ml| 220 4P 131 =3P (AL4)
TR o0l 54 130 156 —221 |

—13] =3P =221 4P

where m is the mass for unity length of the beam.

Assuming that the damping matrix [D] is not affected by the
crack, it can be calculated through the inversion of the modeshape
matrix [ ¢] relative to the undamaged structure

[D]= (1) '[dll¢] ",

where [d] is the following matrix:

(A15)

Pi u,' A4i+]
la
9, 3in h
M, | ) Py uy

| | b |

Fig. 3 Cracked element
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[d=2 .. i e a9
0 ... 0 oM,

in which ¢; is the modal damping ratio, w; is the ith natural fre-
quency, and M; is the ith modal mass relative to the undamaged
beam.
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The aim of the present paper is to evaluate the complex oscillatory behavior, i.e., the

Department of Structural Engineering and
Geotechnics,

Politecnico di Torino,

Corso Duca degli Abruzzi 24,

10129 Torino, Italy

transition to chaos, in damaged nonlinear structures under excitation. In the present
paper, Part II, we apply the theoretical approach described in Part I to perform an
extensive parametrical investigation. We focus our attention on a cantilevered beam with
several breathing cracks subjected to sinusoidal excitation. The numerical simulations
have been performed by varying the number of cracks, their depth and position, as well

as the amplitude, frequency and position of the excitation, for a total of 83 different
cases. [DOI: 10.1115/1.1934631]

1 Introduction

As shown in Part I, the proposed theoretical and numerical
approach can be successfully applied to the study of damaged
structures. The aim of the present paper, Part II, is to perform an
extensive parametrical investigation to describe the influence of
the main parameters on the dynamic behavior of the considered
system. For a given model, the system complexity is a function of
the complexity of the structure, as well as of the complexity of the
excitation. Focusing our attention to the excited cracked cantile-
vered beam introduced in Part I, we have performed a parametri-
cal investigation by varying the main parameters influencing the
structural complexity, i.e., the cracks’ number, depth and position,
as well as the force amplitude, frequency and position, for a total
of 83 different cases.

Several researchers have studied the problem of a beam with a
breathing crack from analytical, numerical and experimental
viewpoints [1-7]. In particular, relevant numerical investigations
have been presented in Ref. [1], by using the Finite Element
Method and in Ref. [2], applying directly numerical integration. In
spite of this, an extensive parametrical investigation on the topic
is entirely absent in the literature and is the object of the present
paper (Part II).

The method, described in detail in Part I, has permitted to cap-
ture the influence of the different parameters on the complex be-
havior for the nonlinear structure, as well as the transition towards
deterministic chaos, i.e., towards a nonperiodic response of the
structure subjected to periodic excitation.

In particular, we have found that, if a weak nonlinearity is con-
sidered, only offset and super-harmonic components can be ob-
served in the structural response. On the other hand, if the non-
linearity becomes stronger, also sub-harmonic components can be
observed in the structural response, providing the so-called com-
plex behavior.

Furthermore, the influence of each parameter on the structural
behavior will be discussed on the basis of the presented extensive
parametrical investigation. A new methodology for vibration-
based inspections will also be presented.
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2 Parametrical Simulations

As an example, we focus our attention onto a clamped beam. It
is 270 mm long and has a transversal rectangular cross section of
base and high, respectively, equal to 13 and 5 mm. The material is
UHMW-ethylene, with a Young’s modulus of 8.61 X 108 N/m?
and a density of 935 kg/m3. We have assumed a modal damping
of 0.002. The beam has been discretized with 20 finite elements.
We have found that a Complexity Index ®=4 and a number of
terms N=16 give a good approximation (i.e., for larger values of
O and N substantially identical solutions are obtained). The first
natural frequency of the undamaged structure is f,,=10.6 Hz.

The extensive parametrical investigation has been performed by
varying the main parameters quoted in Fig. 1. These parameters
affect the behavior of the system, as summarized in the following:

(A) By varying the depth of a crack localized at one-half of the
total length of the beam;

(B) by varying the depth of a crack localized at one-third of

the total length of the beam;

by varying the crack position;

by varying the excitation frequency;

by varying the excitation amplitude;

by varying the depth of one crack (in a beam containing

two cracks);

(G) by varying the position of the excitation (in a beam con-
taining two cracks).

EEICKe)

Each of these families of parametrical simulations is separately
treated in a specific section. The outputs from each simulation are
the same as presented in the examples of Part I. As structural
response we present only the normalized amplitude, correspond-
ing to a given frequency component. It is defined as the ratio of
the amplitude of the considered frequency component to the am-
plitude of the linear one (the component of the response with the
same frequency of the excitation) related to the displacement of
the free-end, i.e.,

. . \“JA%og + Bgog
Normalized Amplitude|;.o = = - (1)
VA + Bye

with reference to the variables introduced in Part I.

2.1 Parametrical Simulations by Varying the Depth of a
Crack Localized at One-Half of the Total Length of the Beam
(A). These numerical simulations consider one crack with a vari-
able depth of a;. They are indicated by the letter A. Referring to
Fig. 1, the coordinate of the crack is d;=135 mm (at one-half of
the total length of the beam), the force amplitude is F=5N with a
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Fig. 1 The considered nonlinear system and the main param-
eters numerically investigated

Table 1 One crack (localized at one-half of the total length of
the beam)—Numerical simulations by varying the crack depth

(A)

One crack—a; variable
d;=135 mm; F=5N; f=25 Hz

a, [mm] Case
1.0 Al
2.0 A2
2.2 A3
24 A4
2.6 A5
2.8 A6
3.0 A7
3.2 A8
Al
0.025
=0
o00a = (/4 —_
. —-—0/2
3 >€ 340
i Q.015
g
<
f:
E 0.01
o
z
0.005
o 9
[+ 08 1 15 2 25 3 35
(a) a1 [mm]
All
0.007
-6 5id0
0006 || == 320 o
A T/4o /
o005 }—{=F= 20

Normalized Amplitude

3
1

15 2 25 3 35
a1 [mm]

0 05
(b)

Fig.2 One crack (localized at one-half of the total length of the beam)—Numerical simulations by varying the crack depth (a) (Al).

(b) (All). (c) (All. (d) (AIV).
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frequency f of 25 Hz (to compare with the first natural frequency
of the undamaged structure, f,,=10.6 Hz). The parameters of the
simulations are summarized in Table 1. The numerical responses
in terms of the normalized amplitude of Eq. (1) as a function of
the crack depth are presented in Fig. 2. Figure 2(a) considers the
frequency components j=0,1,2,3, as well as Figs. 2(b)-2(d), re-
spectively, the components groups j=5-8;j=9-12—j=13-16. It
is very interesting to note that the first symptom of the presence of
a crack, i.e., of the nonlinearity, is the offset (j=0, O-frequency) in
Fig. 2(a), as well as the super-harmonic components, i.e., j
=8(2w), j=12(3w), and j=16(4w), which are also present for
small crack depths. As a consequence, we can affirm that the
nonlinearity implies a natural rupture of the symmetry of the prob-
lem (i.e., an offset). A rather considerable presence of sub-
harmonic components arises after a threshold value of crack
depth, which is around one-half of the total height of the beam.
For this excitation frequency (around twice the first natural fre-
quency), the component of period doubling (w/2) and its mul-
tiples Bw/2, 5w/2, Tw/2) are clearly prevailing.

2.2 Parametrical Simulations by Varying the Depth of a
Crack Localized at One-Third of the Total Length of the
Beam (B). These numerical simulations consider one crack with a
variable depth of a;. They are indicated by the letter B. Referring
to Fig. 1, the coordinate of the crack is d;=90 mm (at one-third of
the total length of the beam), the force amplitude is F=2N with a
frequency f of 19 Hz. The parameters of the simulations are sum-
marized in Table 2. The numerical responses in terms of the nor-
malized amplitude of Eq. (1) as a function of the crack depth, are
presented in Fig. 3. The results are similar to those of the previous
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Table 2 One crack (localized at one-third of the total length of
the beam)—Numerical simulations by varying the crack depth

(B)

One crack—a; variable
d;=90 mm; F=2N; f=19 Hz

a; [mm] Case
1.0 B1
2.0 B2
22 B3
2.4 B4
2.6 BS5
2.8 B6
3.0 B7
32 B8
34 B9
3.6 B10
3.8 B11
4.0 BI12
4.2 B13
44 B14
4.6 B15
4.8 B16

case. The main difference herein is that we have a higher nonlin-
earity due to the reduction of the distance between crack and
clamp. In addition, in this case we have also considered a crack
with a higher depth. If the nonlinearity increases (larger crack
depth or lower distance between crack and clamp), other sub-
harmonic components, not necessarily a multiple of that of period
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Table 3 One crack—Numerical simulations by varying the
crack position (C)

One crack—d, variable
a;=4.25 mm; F=5N; f=25 Hz

d, [mm] Case
260 C1
240 Cc2
220 C3
200 Cc4
180 C5
160 C6
140 C7
120 C8
100 Cc9
80 C10
60 Cl11
40 Cl12

doubling, arise in the dynamic response. In this case, as in the
previous one, the frequency of the excitation is around twice the
first natural one.

2.3 Parametrical Simulations by Varying the Crack Posi-
tion (C). These numerical simulations consider one crack with a
depth of a;=4.25 mm. They are indicated by the letter C. Refer-
ring to Fig. 1, the coordinate d,; of the crack is assumed variable;
the force amplitude is F=5N with a frequency f of 25 Hz. The pa-
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Fig. 3 One crack (localized at one-third of the total length of the beam)—Numerical simulations by varying the crack depth (a)

(BI). (b) (BIN). (¢) (BI). (d) (BIV).
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Fig. 4 One crack—Numerical simulations by varying the crack position (a) (Cl). (b) (Cll). (c) (Clll). (d) (CIV).

rameters of the simulations are summarized in Table 3. The nu-
merical responses in terms of the normalized amplitude of Eq. (1)
as a function of the crack position, are presented in Fig. 4. These
diagrams clearly show that some particular crack positions, corre-
sponding to a linear behavior, can be identified along the beam.
These positions correspond to inflexion points in the beam elastic
line, where the curvature is zero. In these positions the crack does
not breath, so that it does not introduce a nonlinear behavior. For
our cases, the inflexion point is between one-half and one-third of
the beam length, starting from the clamp. Another inflexion point
is clearly shown at the free-end of the beam: A crack placed in the
extreme finite element does not change the linear behavior of the
structure. This phenomenon can be used to detect the crack posi-
tion. A real structure can be, in fact, monitored by varying the
excitation (typically in terms of frequency). A linear behavior,
corresponding to a particular value of the excitation frequency,
implies a crack in the inflection point of the elastic line corre-
sponding to that frequency. In the case considered in Fig. 4, the
nonlinearity vanishes around the inflexion point corresponding to
the second modal shape (consider that the first natural frequency
of the undamaged structure is around one-half of that of excita-
tion). In addition, Fig. 4 clearly shows that the nonlinearity in-
creases if the distance between crack and clamp decreases, as
previously observed combining simulations A and B. As a matter
of fact, the sub-harmonic components can become predominant
with respect to the super-harmonic ones.

2.4 Parametrical Simulations by Varying the Excitation
Frequency (D). These numerical simulations consider one crack
with a depth of a;=4.25 mm. They are indicated by the letter D.
Referring to Fig. 1, the coordinate of the crack is d;=90 mm, the
force amplitude is F=2N with a variable frequency f. The param-
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eters of the simulations are summarized in Table 4. The numerical
responses in terms of the normalized amplitude of Eq. (1) as a
function of the excitation frequency are presented in Fig. 5. The
most interesting result is that a particular harmonic component

Table 4 One crack—Numerical simulations by varying the am-
plitude of the excitation (D)

One crack—f variable
a;=4.25 mm; d;=90 mm; F=2N
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Fig. 5 One crack—Numerical simulations by varying the frequency of the excitation (a) (DI). (b) (DIl). (¢) (DIll). (d) (DIV).

becomes predominant in relation to its own resonance. This means
that the component of frequency mf (m=j/®) becomes predomi-
nant when the frequency of the excitation satisfies:

=L @
m

fo being the first natural frequency of the damaged structure (in
the present case it is around 9.5 Hz). Therefore, the %w compo-
nent, for example, goes into resonance around f=~4/3X9.5 Hz
~13 Hz, as well as the %w component goes into resonance around
f=2X9.5 Hz=19 Hz, according to the numerical results of Fig.
5(a). This phenomenon has been observed for all the frequency
components.

2.5 Parametrical Simulations by Varying the Excitation
Amplitude (E). These numerical simulations consider one crack
with a depth of a;=4.25 mm. They are indicated by the letter E.
Referring to Fig. 1, the coordinate of the crack is d;=90 mm, the
excitation frequency is f=12 Hz and the force amplitude F is
variable. The parameters of the simulations are summarized in
Table 5. The numerical responses in terms of the normalized am-
plitude of Eq. (1) as a function of the frequency of the excitation
are presented in Fig. 6. The results show that the stable solution is
the trivial one of linearity with respect to the force amplitude. The
existence of this linear solution appears rather obvious, as sug-
gested by the motion equation reported in the companion paper
(Part I).

2.6 Parametrical Simulations Considering Two Cracks
and Varying the Depth of One of them (F). These numerical
simulations consider two cracks, one of depth a;=4.25 mm and
the other of variable depth a,. The simulations are indicated by

Journal of Applied Mechanics

the letter F. Referring to Fig. 1, the coordinates of the cracks are
d1=90 mm and d,=180 mm, the force amplitude is F=2N with a
frequency f of 19 Hz. The parameters of the simulations are sum-
marized in Table 6. The numerical responses in terms of the nor-
malized amplitude of Eq. (1) as a function of the crack depth are
presented in Fig. 7. According to these diagrams, the nonlinearity
seems to be less sensitive with respect to the crack depth a,. This
simply means that the predominant crack is the first one, since it is
closer to the clamp. The trend changes only for very high depths
aj.

2.7 Parametrical Simulations Considering Two Cracks
and Varying the Position of the Excitation (G). These numerical
simulations consider two cracks, both of depth a;=a,=4.25 mm.
The simulations are indicated by the letter G. Referring to Fig. 1,
the coordinates of the cracks are d;=90 mm and d,=180 mm, the

Table 5 One crack—Numerical simulations by varying the am-
plitude of the excitation (E)

One crack—F variable
a;=4.25 mm; d,=90 mm; f=12 Hz

F[N] Case
2.0 El
1.0 E2
0.5 E3
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Fig. 6 One crack—Numerical simulations by varying the am-
plitude of the excitation (E)

force amplitude is F=2N, with a frequency f of 19 Hz and the
position of the excitation df is variable. The parameters of the
simulations are summarized in Table 7. The numerical responses
in terms of the normalized amplitude of Eq. (1) as a function of
the position of the excitation are presented in Fig. 8. According to
these diagrams, the nonlinearity presents a clear transition be-
tween the two cracks, larger near the first than near the second
one. The largest nonlinearities arise for values of the force posi-
tion between the first crack and the clamp. A very interesting

F1

Table 6 Two cracks—Numerical simulations by varying the
depth of one crack (F)

Two cracks—a, variable
a;=4.25 mm; d;=90 mm;
d,=180 mm; F=2N; f=19 Hz

a, [mm)] Case
0.00 Fl
1.00 F2
2.00 F3
2.20 F4
2.40 F5
2.60 F6
2.80 F7
3.00 F8
3.20 F9
3.40 F10
3.60 Fl11
3.80 F12
4.00 F13
4.20 F14
4.25 F15
4.40 Fl16

result is that the stronger nonlinearity appears for excitations near
the position of the predominant crack. It is important to note that
the trend does not change substantially when the force position is
closer to the clamp (consider that these are contributions normal-
ized with respect to the linear one, see Eq. (1), so that they do not
vanish near the clamp).
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Table 7 Two cracks—Numerical simulations by varying the
position of the excitation (G)

Two cracks—d variable
a;=a,=4.25 mm; d;=90 mm;
d,=180 mm; F=2N; f=19 Hz

dy [mm] Case
270.0 Gl
189.0 G2
135.0 G3
94.5 G4
13.5 G5

3 General Discussion

The theoretical and numerical approach presented in the com-
panion paper (Part I) appears very useful in the study of highly
nonlinear forced vibrations for damaged structures. It permits us
to take into account the interaction of several breathing cracks. In
the case of high nonlinearity, the super-harmonic frequency com-
ponents become insufficient to catch the real behavior of the struc-
ture. As a consequence (offset and) sub-harmonic components
must be taken into account. One example is given by the period
doubling phenomenon, recently experimentally observed and dis-
cussed in both Parts I and II. The extensive parametrical simula-
tions, presented in Part II, have been performed by varying all the
main parameters influencing the dynamic behavior of the struc-
ture: The number of cracks, their depth and position, as well as the

GI

amplitude, frequency, and position of the excitation.
The results can be summarized as follows:

(I) For a weak nonlinearity, we have to take into account in the
structural response not only the super-harmonic frequency
components but also an offset (zero-frequency);

for a stronger nonlinearity, we have to take into account not
only the super-harmonic frequency and offset components
but also the sub-harmonic ones (complexity and transition
to deterministic chaos);

if a crack implies, as a particular case, a linear behavior of
the structure, we can conclude that the crack position is
close to an inflection point of the elastic line corresponding
to the excitation frequency. This result could be useful to
improve the techniques of vibration-based inspection;

the nonlinearity increases if the position of the excitation
becomes closer to the crack (or, obviously, if the crack
position becomes closer to the clamp, or if the crack depth
becomes larger);

the component of frequency mf becomes predominant in
correspondence of its own resonance, when the frequency
of the excitation satisfies f= f,/m;

the behavior becomes linear with respect to the amplitude
of the excitation.
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Newmark’s Time Integration
Method From the Discretization of
Extended Functionals

In this note we illustrate how to obtain the full family of Newmark’s time integration
algorithms within a rigorous variational framework, i.e., by discretizing suitably defined
extended functionals, rather than by starting from a weak form (for instance, of the
Galerkin type), as done in the past. The availability of functionals as a starting point is
useful both as a tool to obtain new families of time integration methods, and as a
theoretical basis for error estimates. To illustrate the first issue, here we provide some
examples of how to obtain modified algorithms, in some cases significantly more accurate

than the basic

Newmark

one despite having a comparable computational

cost. [DOL: 10.1115/1.1934648]

1 Introduction

This work aims at giving an application to some ideas, pre-
sented for the first time in [1], concerning the variational basis of
time integration algorithms for the initial-value structural dynam-
ics problem.

In recent times, the term “variational approach” has assumed a
somewhat slack meaning, including techniques, most notably the
Galerkin or Hamilton/Ritz ones, in which the basic equations
(usually in weak form) are written as the variation of something
which is never defined. The use of these strategies is a forced
consequence of the lack of a potential function for the problem to
be solved; nevertheless, it has been very successful, to the point of
extending the meaning of the term “variational” to something that
is not truly variational.

Since the work described in [2-4] has shown that every math-
ematical problem can be given a rigorous variational formulation,
we believe that such a terminology would be better maintained in
its proper sense. Therefore, here we use the expression “varia-
tional formulation” solely to denote the statement of a problem in
terms of the stationarity of an explicitly defined functional.

The variational framework adopted in [1] is described by the
theory developed in [2-4], whose main results can be summarized
as follows. Let us write a generic problem (linear or nonlinear) in
the following form:

Nx)-P=0, (1.1)
where A/(:) denotes an operator, in general nonpotential (i.c.,
which cannot be seen as the gradient of a functional), containing
all the equations governing the problem (i.e., all field equations
and both boundary and initial conditions), whereas x and P indi-
cate, respectively, an unknown function and a given known term,
both possibly vector or tensor valued. Starting from the theory
presented for the first time in [2], Ref. [3] discusses a general way
to construct variational formulations of problem (1.1), by splitting
operator N(-) into a linear, symmetric, positive definite part S(-),
hereafter called kernel, and a residual part R(-)
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M) =8()+R() (1.2)

The kernel S(-) must be symmetric with respect to a non-
degenerated bilinear functional [2] indicated by the symbol (. , .),
i.e., such that the following identity holds:

(x,8y) =(Sx.y) (1.3)

Problem (1.1) always admits an extended [2,5] variational formu-
lation, governed by the following functional:

Y x,y

1

Flx,y]={x=y,Nx) - P) - 5<x—y,$(x—y)> (1.4)
It has been proved [4] that the critical points of functional (1.4)
are solutions of Eq. (1.1) (and vice versa) and that y=x at any
critical point of Eq. (1.4).

The general theory developed in [2,3] requires the definition of
a linear, invertible kernel S(-). The range of admissible kernels
has subsequently been widened, first in [4] and, very recently, in
[5]. In particular, Brun et al. [4] have shown that the choice S(-)
=0 leads to the construction of a meaningful extended functional
associated with problem (1.1), that reads

G[X’Y]=<X_Y,N(x)_P> (15)

In [1], it has been shown that all the Galerkin or Hamilton/Ritz-
based algorithms for numerical time integration can be derived
from the stationarity of a functional of the type (1.5) with respect
to the auxiliary unknown y; such a stationarity equation, in fact,
formally reads

8,Glx,y]=~(dy,Nx) - P)=0 (1.6)

which can be seen as the Petrov—Galerkin weak form of problem
(1.1) [5], where no restriction is placed on the choice of the bilin-
ear functional, and the variation Sy assumes the role of a weight
function.

All the traditional weak form approaches do indeed start from
an equation of the form (1.6), and proceed by discretizing the
main unknown function x, and by defining the weight function 6y.
We wish to remark that, in general, different results would be
obtained by approaching the problem at the level of the functional
(1.5), i.e., by discretizing directly the auxiliary unknown y by
means of fest functions, instead of defining its variation §y. One
of the main features of the theory discussed in the present work is
indeed this more “consistent” treatment of the discretization of
main and auxiliary unknowns, possible only if a functional is
available.
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Previous work done on the application of this theory to the
equations of structural dynamics [1,6,7] has never been concerned
with the discretization of functionals F and G to obtain known
time integration methods; here, we focus our attention on New-
mark’s method [8]. This family of time integration algorithms was
originally derived in a sort of “empirical” way, but has subse-
quently been given a variety of theoretical fundaments, both as a
Taylor-series expansion and as a recurrence equation deriving
from the discretization of a Galerkin-type weak form (see [9] for
a review of this field). Some special cases of the Newmark family
have also been obtained and discussed in [10] by starting from a
Hamilton approach and without using shape functions. Owing to
the absence of classical extremum principles governing the initial-
value structural dynamics problem, Newmark’s method (as well
as all the existing others) has never been derived from the station-
arity of a functional.

Here, we wish to show how the theory developed in [1], briefly
summarized here above, does indeed allow one to recast New-
mark’s method into a rigorous variational framework, which
might prove useful from both the theoretical and the practical
viewpoints. For instance, the availability of functionals might al-
low the derivation of new algorithms in which some desirable
feature—energy conservation in the nonlinear range is the first
which comes to the mind—is prescribed a priori as a constraint in
the stationarity process.

We first discuss how to derive Newmark’s method from the
discretization of extended functionals of the type (1.5). Next, we
will illustrate, by means of examples, some ways to exploit the
new theoretical framework available, in order to obtain new time
integration algorithms, some of which appear to have an accuracy
far superior to that of the basic Newmark method.

2 Discretization of Extended Functionals to Obtain the
Newmark Method

The equations describing the Newmark method are [8]
AP
Uyyy = Uy + Atv, + 7[(1

- Zﬁ)an + Zﬁan-ﬂ] (2 la)

Upp1 = U+ At[(l - ’)/)an + yan+l] (21b)

u, v, and a indicating displacement, velocity, and acceleration
fields, respectively, and At=t,,,—1t, denoting the considered time
step. From here on, for simplicity and without loss of generality,
we will always set #,=0 and 7, =At.

A first important observation is that, owing to the mutual inde-
pendence of the algorithmic parameters 8 and 7, in order to obtain
these equations variationally one must take a two-field approach
in writing the equations of motion, in which the velocity is treated
as an independent variable. Therefore, we write the equations of
motion, for simplicity in terms of a single degree of freedom, for
0<t<At as

mit) + cut) + ku(r) - f(r) = 0; (2.2a)
ut) —u(r) = (2.2b)
©0) - v,=0; (2.20)
—u(0) + 1, =0 (2.2d)

where m indicates the mass, ¢ the damping, and k the elastic
stiffness. In the classical Newmark approach, Eq. (2.2a), evalu-
ated at time r=r,,; and in which () is replaced with a(r), is
combined with Newmark’s update Egs. (2.1), in order to obtain
displacements, velocities, and accelerations at the end of the time
step.

Turning now to the issue of choosing a functional to be dis-
cretized, in order to obtain Newmark’s method, observe that for-
mulas (2.1) define time continuous displacements and velocities.
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Carini and Genna [1] provide several functionals of the type (1.5)
for the structural dynamics equations, based on different choices
of the bilinear functional. In view of our purpose and of the pre-
ceding observations, here we will make reference only to a par-
ticularization of one of them (called G{ in [1]), namely to a two-
field, time continuous functional, i.e., one in which displacement
and velocity are independent variables, and the initial conditions
(2.2¢) and (2.2d) are prescribed in strong form. By setting x
={u(r),u(t)} as the real unknown vector, whereas y={u,(r),v(r)}
contains the corresponding auxiliary unknowns, functional G of
Eq. (1.5) then reads

Glx,y]= Glu(r), u1),u (1), v,(1)]
Ar
= f [u(t) = u(D)][miAe) + cult) + ku(z) - £(2)]dt
0

At
+ f m[u(t) = v (D) ][uA7) — (1) ]dt (2.3)

0

where, without altering the starting problem, we have inserted the
mass coefficient m into the second integral, for dimensional con-
sistency.

The possible discretization leading to Newmark’s Eqgs. (2.1) is
suggested by the inspection of the stationarity conditions of func-
tional (2.3) with respect to the auxiliary unknown functions u; and
v, and by their comparison with the target Egs. (2.1). The follow-
ing requirements are obtained, with specific reference to the dis-
cretization of functional (2.3):

1. the shape functions, approximating the real displacement
and velocity fields, can be taken as linear functions of time,
each starting from the respective initial values;

2. the test functions [the discretization of the auxiliary dis-
placement and velocity fields u,(r) and v,(r)] must exhibit
coupling between the unknown coefficients of u, and those of
v,, and there is no need for their continuity over time steps;

3. B and y must appear in the definition either of the shape or
of the test functions; the calculations are simpler, and more
similar to others of analogous approaches [9], if one lets
them appear in the test functions only; and

4. the forcing term must be discretized as a linear function of
time.

Thus, we are led to writing the following sets of approximating
functions (where a superimposed hat indicates unknown constant
coefficients).

e Main unknowns (shape functions):

+1 ~ Uy
H=u, + 2l " 2.4
u(t) = u, A7 (2.4a)
of) = v, + 2Ly (2.4b)
At
* Auxiliary unknowns (test functions):
uy(t) = U1, B, y)ils + U (t.8,7)¥;
u(t) = V, (1, B, V)iis + V. (8, B, Y) Uy (2.5)

where U,, U,, V,, and V,, are functions of time to be iden-
tified.
e Forcing term:

fn+1 fn

At

) =f,+ (2.6)

The primary unknown coefficients i,,; and 9, are computed by
plugging Egs. (2.4)—(2.6) into functional (2.3) and solving its sta-
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tionarity equations with respect to the auxiliary unknown coeffi-
cients i, and ¥,. By matching these stationarity equations with
Egs. (2.1) we can identify the functions U,,, U,, V,, and V,, which,
finally, have to satisfy the following relationships:

Ar
f U, dt= At (2.7a)
0
At
U,tdt = yAr,; (2.7b)
0
A AP
U,dt=—; (2.8q)
0 2
Ar
f U, tdt = BAF; (2.8b)
0
At
f V,dt =0; (2.9a)
0
At
f V,tdt =0; (2.9b)
0
At
f V,dit=—At; (2.10a)
0
& AP
V,idt=—— (2.10b)
o 2

Since we have eight conditions to identify the unknown functions
v, U, V, and V,, the simplest possible choice, among the infi-
nite ones, is to define them as all linear in time:

Uu=k1+k2t; Uv=k3+k4l; Vu=k5+k6t; Vv=k7+k8t

(2.11)

Thereafter, one can compute all the coefficients k;, thus coming to
the following test functions to be plugged into functional (2.3):

t
N=|4-6y+6(2y-1)— |
u(r) y+6(2y )At iy

+[238- 1At =348 - 1)f]d, (2.12q)

v (1) = b, (2.12b)

The discretization defined by Egs. (2.4), (2.6), and (2.12), in-
serted into functional (2.3), leads to Egs. (2.1).

It is worth pointing out that the time derivative of the dis-
cretized velocity 1(t) in Eq. (2.4b), i.e., the constant expression
(D,41—v,)/At, turns out to be precisely Newmark’s result (1
—7v)a,+ ya,,, and therefore it is not the final acceleration a,,,;, as
computed by inserting u,,,; and v,,; into Eq. (2.2a) and inverting
it. This is not a contradiction, but just a consequence of the fact
that the variational procedure enforces the validity of both equa-
tions of motion (2.2) in weak form.

In conclusion, essential requisites to obtain the Newmark
method from a variational formulation are (i) the two-field and
time continuous approach, and, at least when starting from func-
tional (2.3), (ii) the linear approximations for both the main un-
known fields and the forcing term, and (iii) the coupling between
the two test functions in terms of unknown parameters. Even
though we have been able to obtain several particular Newmark
algorithms (with fixed values of B8 and 7, or, for instance, for an
undamped motion) by means of different, often simpler choices,
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we have never been able to generalize them, without satisfying all
the afore said requisites (i-iii), to the full Newmark family.

Finally, we wish to point out that, owing to the existence of
multiple solutions to Egs. (2.7)—(2.10), but also owing to the pos-
sibility of using slightly different strategies altogether, there are
multiple ways to obtain time integration schemes sharing exactly
the same features and the same algorithmic properties with New-
mark’s method. The path indicated in this section, albeit possibly
the simplest one, is not unique. We have indeed found other ways
to derive Newmark’s method from the discretization of extended
functionals, but here we do not expand further on this aspect for
the sake of brevity.

3 Examples of Application of the New Theoretical
Framework

Here, we wish to illustrate, by means of some examples, how
the availability of a functional governing the problem under study
can help in obtaining numerical methods with possibly improved
features. Indeed, the possibility of working with test and shape
functions which have the same “dignity” (as hinted in the Intro-
duction) allows one to start from the already excellent Newmark
family of algorithms and try to improve on them in a rather simple
way, reasoning by analogy.

We will present three methods. First, we will just increase the
number of unknown parameters in the basic discretization defined
by Egs. (2.4), (2.6), and (2.12). Then, in the second method we
will maintain the same number of unknowns, but we will modify
the discretization of the main unknowns according to the sugges-
tion provided by Egs. (2.12). In both these methods we will search
for maximum accuracy. In the third one, we will illustrate the
effects of preconditioning kernels S(-) on the stability of the re-
sulting algorithms. Both linear and nonlinear examples will be
shown.

3.1 A Modification of Newmark’s Method by Increasing
the Number of Unknowns. The simplest idea which comes to
mind, in order to improve the accuracy of Newmark’s method
starting from the theory proposed, is to modify the discretization
defined by Egs. (2.4), (2.6), and (2.12) by increasing the number
of unknown parameters. This could be done in several ways, as
long as the main unknown parameters are as many as the auxiliary
ones, in such a way as to maintain the uncoupling of the station-
arity equations (see also [1,4,5]) and being thus able to solve for
the main unknowns only. An improved algorithm, at least in terms
of accuracy, is defined by the following approximation:

e main unknowns (shape functions)

Uy —U o V1=V
u(t)=un+$t+bt2; ut) = v, + "¢

At
(3.1)
 auxiliary unknowns (test functions)
(1) = [4 6y+6(2 1)i] i
u\t) = Y Y Ar Us
+[2(38-1)At-3(4B - 1)t]D, (3.2a)
u() =0+ byt (3.2b)

Here, b and b, represent two new unknown parameters; the values

of the main unknowns i,,, ¥,.;, and b are obtained by solving
the stationarity equations of functional (2.3) with respect to iy, ¥,

and l;S. The cost, with respect to what is required by the standard
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Algorithm comparison for undamped motion (f = 1/6, y = 1/2)
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Fig. 1 Integration of undamped, unforced linear motion with m=1, k=1. Comparison of stan-

dard Newmark, “augmented” Newmark (Sec. 3.1), and “improved” Newmark (Sec. 3.2) solu-

tions, all with 8=1/6, y=1/2, At=0.5.

Newmark method, is of course significantly hi%her.

Appendix A reports the amplification matrix  of this family of
methods, as well as of those defined in the next two sections.

The family of algorithms generated by means of Eqgs. (3.1) and
(3.2) requires y=1/2 for second-order accuracy. If B=1/6 it is
possible to get third-order accuracy only in the undamped case,
which is, however, an improvement with respect to Newmark’s
method, which never does go beyond second-order accuracy. We
have also found that, by adding only one unknown to the basic
Newmark discretization, the resulting algorithms tend to become
unstable, or to acquire poor characteristics in terms of energy
dissipation. The special case defined by Egs. (3.1) and (3.2) is
indeed the best we could obtain, and some results of its applica-
tion are shown in Figs. 1 and 2, together with those given by the
algorithm illustrated in the next section.

Only switching to the even more expensive choice of four un-
known parameters for both shape and test functions it is possible
to significantly improve in all respects on the basic scheme. In any
event, the availability of the framework developed in this work
allows one to easily generate new families of algorithms which
could also be tailored to suit several specifications (accuracy, sta-
bility, energy dissipation), by following standard techniques.

3.2 A Modification of Newmark’s Method With the Same
Unknowns. The observation of the most characteristic feature of
Egs. (2.12)—the coupling between the discretizations of the aux-

"The amplification matrix A of a time integration algorithm relates quantities at
the end of one step to quantities at the beginning of the next one, under initial
conditions only (i.e., without considering forcing terms), as follows:

[”m :| :A[”u :| _ |:A|| Ap :| |:”n :|
Ups1 v, Ay Axp Ly,
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iliary velocity and displacement—suggests a way to increase the
polynomial order of the main unknowns, from what is required in
Newmark’s method (Eq. (2.4)), without increasing the number of
unknowns. Among various ways of proceeding, we have found the
following one to furnish interesting results:

e main unknowns (shape functions)
12;1+l — U, f’n+l ~ Ui »
H=u,+——t+(hyy+hpB)———1;
) =, + T )
(3.3a)

f}n+1_vn
1=y, + ——t
un) =y, +— o

 auxiliary unknowns (test functions) as in Egs. (2.12).

(3.3b)

Here, we have introduced a coupling between the unknown veloc-
ity and displacement similar to that already necessary in the test
functions only to obtain the standard Newmark method, and have
also introduced Newmark’s algorithmic parameters 8 and 7 into
the shape functions; /; and &, are further algorithmic parameters.

In Egs. (3.3) the number of main unknown coefficients is the
same—two—as in the basic Newmark method, which leaves this
modification roughly as expensive as the basic Newmark scheme.
Even though the approach illustrated in this paper seems to imply
the doubling of the unknown variables, with respect to what is
required by a standard approach (i.e., one simply defined by Egs.
(2.1)), it is possible to show that, both for the standard Newmark
case (as obvious) and for the “improved” one illustrated in this
section, even in the multi-degrees of freedom (DOF) case, the
main computational cost entailed at each integration step corre-
sponds to the solution of a linear system of equations whose size
is equal to the number of degrees of freedom of the system. Ap-
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Algorithm comparison for damped motion (B = 1/6, y = 1/2)
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Fig. 2 Integration of damped, unforced linear motion with m=1, k=1, ¢=0.04. Comparison of

standard Newmark, “augmented” Newmark (Sec. 3.1), and “improved” Newmark (Sec. 3.2)

solutions, all with g=1/6, y=1/2, At=0.5.

pendix B, in which, for the sake of clarity and completeness, we
report the calculations required by our approach for a general,
multi-DOF system, will also sketch one possible way to illustrate
this assertion.

We have optimized the resulting family of algorithms in terms
of accuracy only, with the following results: y=1/2 is required for
second-order accuracy regardless of the value of all the other pa-
rameters; if 8=1/6 and h,=3(1—-h,) then, in the undamped case
only, the algorithm is fourth-order accurate. With these parameters
its accuracy is anyway far superior to that of the basic Newmark
method, as shown by the numerical results of Figs. 1 and 2, which
refer precisely to this set of parameter values, for all the three
methods considered (basic Newmark, “augmented” Newmark as
in the previous section, and “improved” Newmark as defined
here).

Figure 1 refers to the undamped case and Fig. 2 to a damped
one; in both cases it is apparent that the “improved” algorithm is
quite effective; the “augmented” one, more expensive, is affected
by a significant numerical damping, even though its phase error is
smaller than that of the basic Newmark method. With this set of
parameters, the “improved” method is unconditionally stable,
whereas, interestingly, the basic Newmark is only conditionally
stable. We finally observe that, with the chosen set of parameters,
the added quadratic term in the discretization of the displacements
[Eq. (3.3a)] turns out to be exactly the time integral of the linear
term in the velocity.

3.3 Effects of Preconditioning Kernels: An Example for
the Linear Case. We now consider the effect of the inclusion of a
kernel S(-) into an extended functional governing problem (2.2).
Our purpose is to see how the inclusion of a kernel, in the basic
extended functional, this time keeping otherwise fixed the adopted
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discretization, modifies Newmark’s method, as obtained in Sec. 2.

For the sake of simplicity, we set m=1, ¢=0, and k=w? in Eq.
(2.2a), and rewrite Eqgs. (2.2a) and (2.2b) in the following, handier
matrix form:

, d

Y a [u(t)]_[f(t)]
a o] Lo

Cdr

(3.4)

and, as done before, we assume to satisfy a priori the initial con-
ditions (2.2¢) and (2.2d). With the aim of writing down an ex-
tended functional of the type (1.4), the simplest possible symmet-
ric kernel S(-) is the following linear one:

W, ¢ u
w1

where the constants €, €,, and {5 are free algorithmic parameters.
The extended functional of the type (1.4), with the choice (3.5)
for the kernel, reads:

(3.5)

Ar
F[X’y] = F[M([), v(t),us(t),vj(t)] = f (M - us)(i)"' wzu _.f)dt
0

At 1 At
+f (v- vs)(v—u)dt—if (u—ug (- uy)
0

0
1 At
+O(v—v)]di - Ef (v=v)[ o = uy) + €3(v—v,)]dt
0
(3.6)
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discretization as in Egs. (2.4), (2.6), and (2.12): stability and phase shift

By adopting the discretizations (2.4), (2.6), and (2.12), and com-
puting the stationarity conditions of functional (3.6) with respect
to all the unknown coefficients, we obtain a whole family of time
integration schemes, which, of course, reduces to Newmark’s one
for the choice €;=€,=¢3=0. It is quite cumbersome to examine
the algorithmic features of this family in terms of all its free
parameters. Therefore, here we show only some results for the
special case S=1/6, y=1/2. In the linear case, such as that gov-
erned by Egs. (2.2), the analysis of the algorithm can be per-
formed in a standard way, by writing down in explicit form the
amplification matrix and computing numerically (analytical calcu-
lations are too complex) the spectral radius (i.e., the maximum
eigenvalue of the amplification matrix), the numerical damping,
and the phase shift (i.e., the relative error between the numerical
and the exact time periods of the motion), as described, for in-
stance, in [11].

Any choice of parameters €, €{,, and €5 yields second-order
accurate algorithms; this can be checked analytically, from the
coefficients of the amplification matrix, reported in Appendix A.
All the other results, part of which are summarized in Fig. 3, have
been obtained numerically.

Coefficient €, must be non-negative in order to guarantee some
stability. If 0=<¢,<<0.157, with €,=¢3=0, one has conditional
stability, with critical time step increasing with €; if €,=0.157
unconditional stability with numerical damping is obtained [Fig.
3(a)].

Coefficient €, must be nonpositive to guarantee stability; its
inclusion has almost negligible effects on all the algorithmic prop-
erties (it adds an almost negligible amount of numerical damping,
and alters very slightly both the phase shift and the stability
limit—see Fig. 3(b)).
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Finally, we have checked the influence of coefficient €5 only for
€=4,=0. For £3<0 and €5>2 there is unconditional instability,
while for 0= €3 <<0.746 one has conditional stability, with critical
time step increasing with €5. The choice 0.746=<{3<<2, with €,
={,=0, yields unconditional stability with numerical damping.
Only for €3=2 unconditional stability with no numerical damping
is found (Fig. 3(c)).

These are indeed surprising results, since the adopted discreti-
zation, if plugged into the no-kernel functional (2.3), with B
=1/6, y=1/2, gives rise to a conditionally stable algorithm. In
this case, unlike what was found in [1] with reference to a wholly
different discretization, it turns out that the addition of a kernel
can yield unconditional stability, where the no-kernel approach,
keeping fixed all the other ingredients, leads to conditional stabil-
ity; by selecting a careful combination of coefficients €; one can
also control numerical damping.

Figure 3(d) shows the influence of coefficient €3, with €,=¢,

=0, on the phase shift (T—T)/T (T being the exact time period of

the motion, and T the computed one) of the solution, which is
slightly worse than that of the basic Newmark scheme for small
time steps, and much better for large ones.

The same kernel discussed here has similar effects also on the
Central Difference method, another special case of Newmark’s,
with B8=0, y=1/2, therefore explicit. Here, for example, any
choice €,=¢,=0, 0.2=< €3 =<2 makes the new algorithms, obtained
by means of the inclusion of a constant kernel, unconditionally
stable and, for €3=2, with zero numerical damping as well. In this
case, however, the modified algorithms should be implicit, even
though we have not checked this analytically (we have obtained
only the relevant amplification matrix).
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3.4 An Example for a Nonlinear Case. Finally, we discuss
some results obtained by applying the variationally based integra-
tion methods described previously to the following nonlinear
(modified Duffing) equation:

ii(f) + cii(r) + u()) = f(f) = —cos r—csin t+cos’t  (3.7)

where everything is intended to be nondimensional, and which, if
coupled with the initial conditions

u(0)=1; (3.8a)
1w(0)=0 (3.8b)

has the trivial exact solution
u(t) =cos t (3.9)

Such a problem has been considered in [12] for ¢=0.05; it was
observed that the solution (3.9), if computed numerically, is un-
stable, regardless of the adopted integration method and of the
chosen time step. By unstable solution here we mean that the
motion described by Eq. (3.9), if computed by numerical integra-
tion of Eq. (3.7), no matter how small is the adopted time step, is
always abandoned after some cycles, with the computed solution
going towards one of several others, which seem to exist for Eq.
(3.7), and to powerfully attract the numerical solution; by chang-
ing details of the integration scheme one or another of them can
be reached.
The methods we have compared are:

1. the basic Newmark’s method as given by Egs. (2.1), coupled
with Eq. (3.7) evaluated at 7,,,;, with 8=1/6, y=1/2;

2. the method arising from the procedure discussed in Sec. 2.
Recall that such a procedure yields exactly Newmark’s
method in the linear case, but in the nonlinear one, in gen-
eral, it does not; now, we must rewrite functional (2.3), ac-
cording to the formal structure of Eq. (1.5), accounting for
the new problem under study, i.e.:

Glx,y] = Glu(t),u1),uy(1),v(1)]
At

= J [u(?) = uy()N[AD) + ) + u(2)® - f(1)]dt
(

)

Ar
+ f () = v(D)][ A1) — u(t) dt (3.10)
0

to be discretized as in Egs. (2.4), (2.6), and (2.12);

3. the same as in point 2 above, but exploiting the formal struc-
ture of functional (3.10) to integrate the forcing term ana-
Iytically. By this we mean that, instead of adopting the dis-
cretization (2.6), we put into functional (3.10) the analytic
expression for the forcing term f(z) as defined by Eq. (3.7)
and then, adopting the discretization defined by Egs. (2.4)
and (2.12), we compute the relevant integrals in closed form.
Such a procedure cannot be applied in general, of course,
but it may be useful to distinguish between two different
sources of error: that due to the discretization, and the
quadrature one introduced when approximating the forcing
term. The availability of a functional allows one to mitigate
this last error by adopting better quadrature formulas than
that implied by Eq. (2.6);

4. the “improved” Newmark method already illustrated in Sec.
3.2 for the linear case, obtained now by starting from func-
tional (3.10), and adopting the discretization defined by Egs.
(2.6), (2.12), and (3.3);

5. the method already illustrated in Sec. 3.3 for the linear case,
which makes use of the same formulation and discretization
as in method 2, but starts from a functional of the type (1.4),
with the linear kernel
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The resulting functional, associated with Eq. (3.7), reads

therefore:

Flx,y] = Flu(t), u0),u,(t), v(1)]

Ar Ar
=f (U+ cv+ u3—f)dt+f (v—1v,)(v—u)dt
0 0
1 At
- _f (M - M:)[el(u - us) + €2(v_ Us)]d[
2 0

At
- %f (v=v)[r(u—uy) + €5(v—v,)]dt (3.12)
0

and the discretization is again given by Egs. (2.4), (2.6), and
(2.12). Here, we show the results obtained for ¢,
=-1.35221, €¢,=0, €3=0; some comments about the influ-
ence of the parameter choice for this problem will be given
later.

We have adopted B8=1/6 and y=1/2 in all the methods, which,
for this problem, are all conditionally stable (in the usual sense).

Figure 4 shows time histories, as computed numerically using
the described methods, for ¢=0.05 and Ar=0.5 (i.e., At/T
=0.078 75, T being the time period of the exact solution of Eq.
(3.7)). As expected, none of the employed methods could remove
the numerical instability, as each algorithm, after following the
exact solution (3.9) for some cycles, goes in its own way towards
different time histories. Methods 1 and 2 (Figs. 4(a) and 4(b)) do
not yield the same result, even though they coincide in the linear
case. The use of an exact integration of the forcing term (method
3, Fig. 4(c)) improves only marginally the stability of the solution.
When using the “improved” Newmark scheme with this time step
(result not illustrated in Fig. 4) an explosive instability of the
solution is obtained, which could be removed only by reducing
the time step.

This suggests that the accuracy of the algorithm is less of a
factor, in controlling how long the numerical solution of problem
(3.7) can stay on the right one (3.9), than its numerical damping.
Indeed, both methods 3 and 4 are affected by a verifiably smaller
error than both 1 and 2 in the linear case; nevertheless, it appears
that their energy behavior, for this specific problem, is quite far
from optimal (recall, however, that method 4 has been “designed,”
in the linear case, with accuracy only as a target).

Our choice of parameters €, £, and €5, for the kernel (3.11) in
method 5, allows the algorithm to stay on the exact solution for a
much longer time than the others (Fig. 4(d)).

It must be said that this behavior is not strictly associated with
the use of this specific kernel, but that the kernel itself just acts as
a further ingredient which (i) changes the conditioning of the re-
sulting algorithm, as discussed in [1,13], and (ii) can control the
numerical damping, as shown in Sec. 3.3 for the linear case. In
this last respect, it is worth observing that the “good” result of Fig.
4(d) is obtained for a value of €; which would lead to an unstable
algorithm, with this time step, in the linear case. Here, the ten-
dency of the numerical solution to abandon the exact one of Eq.
(3.9) is due to numerical errors usually associated with some en-
ergy loss at each step; if the algorithm is tuned in such a way as to
compensate this loss, by adding some small artificial amount of
energy (therefore being intrinsically unstable), it might cause the
com}z)uted solution to stay on the exact, unstable one for a longer
time”. Therefore, for this problem the obvious conclusion is that

This phenomenon, which we were unaware of, before finding it in our calcula-
tions, can be also obtained in the numerical solution of linear problems, when the
physical damping and the spurious introduction or removal of energy by numerical
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Fig. 4 Time histories computed numerically for the modified Duffing equation of Eq. (3.7). Curve (a): standard Newmark
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Egs. (2.4), (2.6), and (2.12), B=1/6, y=1/2; 1,=-1.35221; I,=1/;=0. At=0.5 in all curves.

this specific choice of a kernel can do nothing good; nevertheless,
it is quite reasonable to expect that other methods, specifically
tailored with respect to stability taking advantage of the available
theoretical framework, might perform much better.

4 Conclusions

We have illustrated a technique to obtain the Newmark method
by discretizing an extended functional. The required formulation
is a time-continuous, two-field one, and the discretization is linear
in time for both the shape and the test functions, this latter being
not trivial at all.

We have provided examples that illustrate some of the advan-
tages coming from the availability of functionals for the structural
dynamics problem with given initial conditions. For instance, the
method of Sec. 3.2 exhibits an accuracy far superior to that of the
basic Newmark method, at a comparable cost, whereas the inclu-
sion of kernels, exemplified in the methods of Secs. 3.3 and 3.4,
has proved to be an important factor in controlling the stability
and conditioning properties of the numerical algorithms.

The availability of a functional allows one to explore new ways
for deriving time integration algorithms, and to better understand
their features. In particular, the knowledge of discretizations lead-
ing to the whole family of Newmark algorithms in the linear case
appears to be an important factor which facilitates the develop-
ment of new, more efficient, algorithms for many particular prob-
lems, which might meet different requirements, for instance in-

schemes can influence each other in such a way as to produce stable but meaningless
results.
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volving accuracy order, stability range, dissipation/energy
conservation properties. Specific constraints, deriving from the
physical problem studied, may be included in the functional and
thus be automatically incorporated into the final numerical algo-
rithm derived from the stationarity process. All these items are the
subject of investigations under way.
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Appendix A

We report the coefficients of the amplification matrix A for the
algorithms described in Secs. 3.1-3.3. Note that, for the sake of
brevity, here we have computed and written these results only for
the special case with mass m=1, i.e., only in terms of the damping
ratio é&=c/m and of the angular frequency w=vk/m of the un-
damped motion. The more general results holding for the case of
a non-unitary mass should be recomputed on the basis of what is
illustrated in the main text; nevertheless, the equations hereafter
reported allow one to easily check all the properties of the corre-
sponding algorithms.

For the family of algorithms derived in Sec. 3.1, the coefficients
of matrix A have the following expressions:

Transactions of the ASME



M, M, M; M,
Ap=—" Ap=—""; Ay=—""13 Ap=—

0, 0, 03

where
M, =12+ (=7+ 12B)Ar0? + 2A (- 2B+ y)o*
+ d12A1y+ AP (6B0? — 3yw?)]

My=6AH{-2+ EAf[1 = 2y+ EAt(-28+ Y]}
+AP(1 + 6BEAL — 3EALY) w*

My =6At0*(2 + AP2B - 7)w?)

M,=12—At(— 12&(— 1 + ) + Ar(1 + 6 8(— 2 + 3€A1)
+3(4 -3EANY) @0 + AP (- 28+ y)o?)

0,=12+ (- 1 + 12B)ALPw? + 201 (- 28+ )0
+3E4Aty+ AP(- 2B+ y)@?)

0, =—12(1 + EAry) + AP2(1 + 68(= 2 + A1) — 3EALY) w”
—2A4(-2B+ y)w?

0= 12+ 3EAt(Ay+ AA(= 28+ ) )
+ AP (= 1+ 128+ 2A2(= 2B+ ) &)

For the family of algorithms derived in Sec. 3.2, the coefficients
of matrix A turn out to have the following expressions:

A _1&. A _1&. A _&. A _1&
ll—D’ 12—Dv 21—Ds 22—D
where
D =12+ At(12&y + 12BAtw? + At(yhy + Bhy) w®

X(=2+ AP (=2B+ y)o?))

Ny =12+ Ad126y - 2A8[3 + 3EAty + vh,
+ B(= 6 — 6EAT + hy)|w* + AP (= 2B+ ) (yh, + Bhy) w*}

Ny==2A1(- 6+ Ar(BE(1 =2y + EAt(- 2B+ y))
+At(yhy + Bhy) w?))

N3=-6At?(2 + AP(2B8 - 7)o

Ny= 12+ At(12E(- 1 + ) = 2A1(p(6 — 3EAL + hy)
+ B(= 6+ 6EAT + hy))w* + AP (= 28 + ) (yhy + Bhy) w*)

For the family of algorithms derived in Sec. 3.3, the coefficients
of matrix A turn out to have the following expressions:

C C, Cy Cy
AII:D_; A12=D_; A21=D_; 22=D_
1 2 2 1

where
Cy=6(12+ A7) = 3022+ 205(- 1+ £,)
— 46, + GAN(12 + BAR) 0 + 3A 4 (=2 + €)1 + £))
+ 000G+ (=24 €)€,) = 26,(= 1+ €)Ar+ €5[-3(2
+ 0AD) +€,(6 = 44, + GHAD )t + 2(= 2+ £5) €, A w®

Cy==3A1(12+ GAP)  +3(= 2= €5+ 2(= 2 + £3)€))AP
X (124 GAP)0? =3(= 2+ €€, [€5(- 1+ €;) - 2(1
+ €1)]Atsw4

Journal of Applied Mechanics

Cy=36A1(12 + G3AR) @ + 3AP(12 + 246, + £,A1(= 12+ €,A1)
+605[4 =20, + AN =32+ 305(= 1+ £)) - 6¢)AP ®

Cy=6(12+ GAP) +3AP (=2 = 205(— 1 + €,) + 46, + £,A1)
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X (=4 +2€,+ A0 + €5[— 6 — €A1+ €, (— 6+ 44,
+ 6,00 ]]w?
+2(=2+€3)0,A1%0°

Dy =6(12+ O3AP) — 6[€5(— 1+ €,) = 2(1 + €))]A7
X (12 + GAP)0® + 3AH (=3 + €)1 +€,) +4[(1 + €,)?
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Appendix B

Here, we show how the variational technique discussed in this
work can be applied to the case of a multi-DOF linear system.
First, we go through the main steps needed to obtain the standard
Newmark scheme, and, eventually, we will show that the “im-
proved”” scheme proposed in Sec. 3.2 does not require a substan-
tial increase of the numerical burden.

Let us write the equations of motion for a multi-DOF linear
elastic system by generalizing Egs. (2.2) as follows (with obvious

meaning of symbols):

Mv(r) + Cv(r) + Ku(r) - £(r) =0 (A1)

v(ir—u(t)=0 (A2)

plus initial conditions in terms of vectors u,, and v,,. Consider now
the variational procedure to obtain the standard Newmark method
illustrated in Sec. 2 (Egs. (2.4), (2.6), and (2.12), now intended to
hold for every component of the unknown vectors), and define, for
convenience, the following constant coefficients:

A=d—6y. B="CY"V 5 oas 1ax
At
E=-3(48-1) (A3)

such that the discretization (2.12) for the auxiliary unknown vec-
tors can be written as

u,(t) = (A + B, + (D + Et)V; (A4)

Writing now the extended functional (2.3), in which, for the time
being, only the discretization (A4) of the auxiliary unknowns is
explicitly written out, but in which it is intended that also the main
unknowns are discretized according to Egs. (2.4), we obtain:

V(1) =¥,

At
G[ﬁn+l’€’n+l’ﬁs7es] = f [u(t) - (A + Bt)ﬁs - (D + Et)‘A’s]
0
[Mv(2) + Cv(1) + Ku(z) — £(z)]dt
At
+ f [v(®) = ¥,]-Plv(1) —u(n)]dr (AS)
0

where the symbol - indicates a vector dot product and, in the
second integral, we have introduced a non-singular mass-type ma-
trix P, similarly to what done with reference to Eq. (2.3). Here
too, this corresponds simply to writing Eq. (A2) premultiplied by
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matrix P, and then applying the formalism of Eq. (1.5). It is con-
venient, for the time being, to keep matrix P different from the
actual mass matrix M in order to understand, later on, the differ-
ences in cost between the basic Newmark method and the im-
proved one of Sec. 2.3. It is intended, however, that matrix P is
fully known.

The stationarity conditions of function (A5) with respect to the
auxiliary unknown vectors @i, and V, give us the equations to
compute the main unknowns 1, and v,,,. We obtain what fol-
lows:

At
9G = f A[Mv(2) + Cv(z) + Ku(z) — £(r)]dt
0

At
+ f B[Mv(t) + Cv(r) + Ku(?) = £(1) Jtdt =0 (A6)
0
9G Ar At
— =f D[Mv(t) + Cv(z) + Ku(z) —f(t)]dt+f E[Mv(z)
(?VS 0 0

At

+ Cv(t) + Ku(z) — £(r) Jedrt + J Plv(r)—u()]dt=0

0
(A7)

i.e., a linear system of equations in the two unknown vectors 1,,,
and v, ;. Now, we need to reduce this system to one in a single
unknown vector (instead of two), similarly to what is required by
Newmark’s method. One way to do so starts by explicitly insert-
ing the discretization of the main unknowns into the stationarity
Egs. (A6) and (A7) and evaluating the integrals, thus obtaining

AAr  BAP
(T + T)Kﬁn+l +g[V,.1,u,,v,,f(1)] =0 (A8)
DAt EAP
[(T + T)K - P:|ﬁn+1 +h[¥V,.,u,,v,.f()]=0 (A9)

where

g[enﬂ’un’vmf(t)] = (M + ‘VCA[){’;H] + (1 - ’}/)AtKlln
+[(1 = »CAt—=M]v, + At(1 — y)f, - AL,
(A10)

At
hl:{’n+l’umvmf([):| = <(P - M)? - ﬂCAlz)f’nH

1
+ [P+ (3— E)sz]un
Ar Dears
+ [(P+M) 5 + (/3— 2)CAZ }v,,

1
- (ﬁ— §>A12fn + BALE,, (A11)

Recalling the definitions (A3), we can rewrite Eqs. (A8) and (A9)
as follows:

yAIKA,,, + g[V,,1,0,,V,,f(1)]=0 (A12)

(P + BAPK)@,,,  — h[V,,,,u,,v,.f()]=0 (A13)

Multiplying Eq. (A12) by BAt and Eq. (A13) by v, and taking the
difference between the two equations, one obtains the following
expression:
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. BAL . .
Pun+1 = Tg[vlz+l’un’vn’f(l):| + h[vn+laun’vn’f(t)] (A 14)

which shows us that, as long as the coefficient of ,,; in the
discretization of u(z) is that described by Eq. (2.4), it is always
possible to express U, as function of v,,; by inverting only the
matrix P. We will come back later to this point, crucial to under-
stand the computational cost required by methods thus formu-
lated, but it is obvious that any method which allows one to
choose a diagonal matrix P would be much less expensive than
what appears from the aspect of the general Egs. (A6) and (A7).

Exploiting results (A10) and (A11), making use of the equa-
tions of motion (A1) written at time t,, setting a,=v(z,), and go-
ing through all the calculations, one can rewrite Eq. (A14) as
follows:

B_1
y 2

+ (E - 1)At2M<—‘A’”+1 — V")
y 2 At

If one now sets P=M into Eq. (A15), as required to obtain New-
mark’s equations, one arrives easily at the following:

At 1
0, =u,+ At(l - E)vn + 'B—\?,Hl + (— - E)Atzan
Y Y 2y

. At Ar )
Pi,, =Pu,+ ?PV,, + EPVyH.I - Ar*Ma,

(A15)

(A16)

an explicit relationship between 4, and v,,; which requires no
matrix inversion at all, and which, if reinserted into Eq. (A12),
provides the solution of the problem according to Newmark’s
equations, through the solution of a linear system of equations in
V.1 only.

If we now turn to the discretization (3.3) of the main unknowns,
that, coupled with the same discretization (2.12) of the auxiliary
ones, produces a modified Newmark scheme with superior prop-
erties with respect to the standard one (at least in some cases), we
observe that the coefficient of vector 1,,; remains exactly the
same as in the case of the basic Newmark scheme (Eq. (2.4)).
Therefore, even though the functions g[V,,;,u,,v,,f(f)] and
h[V,,,u,,v,,f(r)] in Egs. (A8) and (A9) are no more defined as
in Egs. (A10) and (A11), the matrices of coefficients of vector
0, in Egs. (A8) and (A9) remain unaltered, and the result (A14)
still holds.

If we wish to recover our improved Newmark method of Sec.
3.2, we must still set P=M in function (A5), but now all the
simplifications allowed by the structure of Egs. (A8) and (A9)
hold no more, and the simple result (A16) cannot be written,
because, in Eq. (A15), it is very unlikely (we have not checked it,
though) that only matrices P and M would appear.

Nevertheless, a result analogous to Eq. (A16) can always be
obtained, by just inverting matrix P, as already suggested, and as
apparent from the examination of Eq. (A14). In our case, since we
must set P=M, and since quite often matrix M is diagonal, we
can consider this step comparatively inexpensive, and the whole
procedure, even in the case of a non-diagonal mass matrix, is
certainly much less expensive than solving a coupled system in
both unknowns 1, and v, . In this sense we have said, earlier
in this paper, that this new scheme has the same computational
cost as the basic Newmark method.
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Multiscale Shock Heating
Analysis of a Granular Explosive

A multiscale model is formulated and used to characterize the duration and amplitude of
temperature peaks (i.e., hot spots) at intergranular contact surfaces generated by shock
compaction of the granular high explosive HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-
tetrazocine). The model tracks the evolution of both bulk variables and localized tem-
perature subject to a consistent thermal energy localization strategy that accounts for
inelastic and compressive heating, phase change, and thermal conduction at the grain
scale (grain size ~50 um). Steady subsonic compaction waves having a dispersed two-
wave structure are predicted for mild impact of dense HMX (porosity ~19%), and steady
supersonic compaction waves having a discontinuous solid shock followed by a thin
compaction zone are predicted for stronger impact. Short duration hot spots having peak
temperatures in excess of 900 K are predicted near intergranular contact surfaces for
impact speeds as low as 100 m/s; these hot spots are sufficient to induce sustained
combustion as determined by a two-phase thermal explosion theory. Thermal conduction
and phase change significantly affect hot-spot formation for low impact speeds
(~100 m/s), whereas bulk inelastic heating dominates the thermal response at higher
speeds resulting in longer duration hot spots. Compressive grain heating is shown to be
largely inconsequential for the range of impact speeds considered in this work (100
<u, <1000 m/ s). Predictions for the variation in inelastic strain, pressure, and porosity
through the compaction zone are also shown to qualitatively agree with the results of

detailed mesoscale simulations. [DOL: 10.1115/1.1934666]

1 Introduction

Localized heating due to the rapid deformation of heteroge-
neous reactive solids is an important ignition source that may lead
to their detonation. Because thermal energy localization occurs at
the sub-grain scale (grain size ~50 um) due to plastic deforma-
tion, fracture, and friction, it is difficult to experimentally charac-
terize. Multiscale modeling is, therefore, required to better under-
stand the interplay of localized heating and ignition at the grain
scale and the bulk system response. Such modeling necessarily
involves the coupling of physical phenomena occurring over dis-
parate length and time scales as illustrated in Fig. 1 for the shock
compaction of a granular explosive of engineering dimension
(~10 cm). Here, a shock wave is propagating to the right through
the unstressed ambient material (porosity ~20%) leaving it in a
stressed, compacted state (porosity <5%). The compaction pro-
cess is largely inelastic resulting in significant deformation and
heating near intergranular contact surfaces. Depending on the
loading conditions, the mass of material locally heated to a high
temperature may be significantly less than the total grain mass yet
sufficient to induce bulk combustion. The bulk material response
is the integrated manifestation of the grain scale response, and is
commonly described using principles of continuum mixture
theory [1-3]. Continuum-based models, while important because
they can be easily correlated with experiments and applied to
engineering scale systems, lack the degrees of freedom needed to
accurately describe phenomena occurring at scales smaller than a
representative volume element for the bulk material. Indeed,
continuum-based models used to describe mechanically induced
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transition to detonation for both pressed and granular explosives
are often only predictive over a narrow range of impact conditions
due to insufficient descriptions of grain scale phenomena (e.g.,
hot-spot formation). This shortcoming has motivated the develop-
ment of more robust models for describing hot-spot formation in
energetic solids [4-6].

Recently, Gonthier [7] described a modeling approach that can
resolve key features of hot-spot formation in a manner compatible
with both grain contact mechanics and bulk compaction energet-
ics. The approach requires (1) a model for the bulk material re-
sponse, (2) a model for the material structure (e.g., grain size and
packing), (3) a localization strategy for depositing bulk dissipated
energy at the grain scale, and (4) a model for the grain scale
response. It assumes that the bulk material response is experimen-
tally well-characterized and can be accurately predicted by the
bulk model. Bulk dissipated energy is thermalized at localization
sites centered at intergranular contact surfaces. The grain scale
response tracks the evolution of hot-spot temperature subject to
the localization strategy. The integrity of bulk model predictions is
maintained by requiring that the integrated mass, momentum, and
energy at the grain scale equals that given by the bulk model.

In this paper, we modify the localization strategy of Ref. [7] to
account for compressive heating and phase change at the grain
scale, and use the modified model to characterize the duration and
magnitude of hot spots induced by mild and strong impact. While
compression is unimportant for weak deformation waves having
peak solid pressures that are much less than the solid bulk modu-
lus (P;<<K=13 GPa), it is important for supersonic waves as it
gives rise to structures consisting of a lead solid shock followed
by a thin compaction zone similar to those first reported by Pow-
ers et al. [8]; we give an example of such a structure including its
grain scale thermal response. However, even for supersonic
waves, we show that compressive heating plays a smaller role
than localized inelastic heating. Solid-liquid phase change may
also significantly affect hot-spot energetics, particularly at low
impact speeds. The latent heat of fusion of HMX at standard con-
ditions corresponds to an equivalent temperature change of ap-
proximately AT:qZ/cUz 147 K, where q31=0.22 MlJ/kg and ¢,
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Fig. 1 Anillustration of multiscale features for the shock com-
paction of a granular solid

=1.5 kJ/(kg K). It is the relative rates of localized inelastic heat-
ing, thermal diffusion, and chemical reaction that determine if
sustained combustion will occur. Prior modeling has focused on
identifying hot-spot temperatures and sizes needed for ignition
and sustained combustion of high-explosives independent of the
dynamic bulk material response [9,10]. While useful, such analy-
sis does not provide a fully coupled description of hot-spot cre-
ation, growth, and decay due to bulk deformation within the con-
text of an engineering scale model. The primary objective of this
work is to predict and resolve the temperature field in the vicinity
of intergranular contact surfaces for shock compaction of HMX as
part of an ongoing effort to develop coupled bulk-localization
models that accurately describe transition to detonation in ener-
getic solids. The model accounts for key mechanisms that influ-
ence hot-spot evolution, in an albeit simple manner, with the ex-
ception of combustion which will be addressed by subsequent
work.

A secondary objective of this work is to report preliminary
comparisons between our model predictions and those given by
detailed mesoscale simulations [11]. Mesoscale simulations track
the discrete dynamical interactions of a small number of identifi-
able grains (=500), attempting to resolve the stress and tempera-
ture fields within grains; they can provide useful information
about grain scale hot-spot fluctuations, especially in the absence
of experimental data, but are computationally expensive, with fine
scale structure difficult to numerically resolve, and are impractical
to apply to engineering scale systems. The comparisons given in
this paper are a first step in assessing the merits of our localization
strategy based on such simulations.

This work is also a preliminary step in the development and
characterization of a comprehensive multidimensional model that
can be used to predict the combined (hydrodynamic and devia-
toric) loading response of granular solids. Though it is justifiable
to ignore deviatoric stresses for strong compaction waves because
P> ||7|, where 7 is the stress deviator, there exists ample experi-
mental data indicating that bulk shear can significantly affect ma-
terial compaction for weaker waves by reducing the minimum
pressure needed for the onset of inelastic volumetric deformation
(i.e., material crush-up); this process is commonly referred to as
shear enhanced compaction. Shear enhanced compaction is ob-
served in many types of porous solids including powdered metals
[12,13] and geological materials [14,15]. There also exists experi-
mental evidence that shear enhanced compaction may play a
prominent role in the ignition of energetic solids [16—18]; a de-
tailed discussion is given in Ref. [19]. Though an analysis of shear
enhanced compaction is beyond the scope of this study, the analy-
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sis given here will enable the effects of hydrodynamic and devia-
toric stresses on the dynamic loading response of granular solids
to be systematically isolated and studied.

Finally, we note that the multiscale modeling approach formu-
lated in this paper can also be used to address other problems in
engineering science for which localized stress and thermal fluc-
tuations induced by the dynamic loading of heterogeneous mate-
rials is important. One obvious example is the synthesis of high
strength materials (e.g., intermetallic alloys and ceramics) having
small grain crystal structures by shock compaction of nano and
micro-size grains [20,21]. For this application, localized heating
and phase change occurring near intergranular contact surfaces is
essential for obtaining densely consolidated product material. Our
modeling approach can be readily applied to such problems with
slight modifications to its constitutive theory.

The outline of this paper is as follows. We first briefly describe
both the bulk compaction and grain scale heating models, high-
lighting modifications that account for grain scale compressive
heating and phase change. We then give numerical predictions for
both subsonic and supersonic steady compaction waves, charac-
terizing the duration and amplitude of hot-spot temperatures in-
duced by these waves. Lastly, we give predictions showing the
influence of key model parameters on compaction wave structure,
and compare our predictions to those obtained by mesoscale simu-
lations.

2 Bulk Scale Compaction Model

The unsteady, one-dimensional, bulk hydrodynamic compac-
tion model used in this work is a limiting form of the multidimen-
sional model recently formulated by the lead author to investigate
the combined effects of hydrodynamic and deviatoric loading
[19]. The hydrodynamic model equations are given in conserva-
tive form by

ow of
e W) g, (1)
where
w2 ot
w= [p, pu, p(e+3), pd, pd, n] ; ()
w P ~ T
f(w) = [pu, pu’+ P, pu<e+;+;>, pdu, pou, un] , (3)
1= T
g(w) = [O, 0, 0, M(PS-B), pA, 0] (4)

and

1 ~ -
A= /_Z(f_ o) if /> ¢,

(5)
0 otherwise.

These equations track the evolution of granular solid mass, linear
momentum, total energy, volume fraction (¢), no-load volume

fraction (), and grain number density (n), respectively. The no-
load solid volume fraction is the equilibrium value of the solid
volume fraction in the absence of an applied load (i.e., 8—0 as

¢— ¢, where B is an intergranular stress), and is a measure of
inelastic volumetric strain. The grain number density is related to
the solid volume fraction and grain radius, r, by n=¢/ (%wrS),
assuming spherical grains. The assumption of spherical grains,
while simplistic, results in a tractable model that allows us to
estimate the number of intergranular contacts per unit volume
which is needed by the localization strategy outlined in Sec. 3.
Other granular solid variables in these equations have their usual
meaning: p is density, u is particle velocity, P is pressure, and e is
internal energy. Quantities associated with the pure phase solid,
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denoted by subscript “s,” are related to the granular solid variables
by p,=p/ ¢, P;=P/ ¢, and e;,=e—B, where Bzfg,B/pdqb’ is recov-
erable compaction energy. It is shown in Ref. [26] that this ther-
modynamic description is compatible with the Helmholtz free en-
ergy function W(p,T, ¢, d) =V (p;,T)+B(dp— ) and the Gibbs
equation  Tdn=de—P/p*dp+(P,— )/ pddp+B/pdp,  where
W (ps,T) and n=n,(p,,T) are the pure phase solid free energy and
entropy, respectively, and T=T is the temperature. Here, the bulk
entropy is equal to the pure phase solid entropy because excess
surface entropy is ignored. The model is similar to that of Baer
[22] and Powers et al. [8], but better accounts for compaction
energetics due to the inclusion of ¢ in the theory. A comprehen-
sive discussion of the thermodynamic foundation of the model is
given in Ref. [7].

The internal variables ¢ and ¢ are bulk (average) measures of
the material’s microstructural configuration and are needed to
specify its thermodynamic state. Rate equations for these internal
variables are constructed so that compaction does not violate the
strong form of the entropy inequality, and so that ¢;<¢p=<1,
where ¢y is the volume fraction of the loose, virgin material. The
parameters . and & appearing in Egs. (4) and (5) govern the
relaxation rates to the equilibria P,= 3 and f= ¢, respectively. It is
worth noting the similarity between the rate equation for ¢, which
is proportional to (f— )/ i, and those for inelastic strain in clas-
sical viscoplasticity theory [23]. Here, f can be interpreted as a
yield surface for inelastic volumetric strain and i controls the
relaxation rate to the yield surface. Importantly, the inclusion of ¢
enables history-dependent loading to be described that is a direct
consequence of inelastic compaction, as illustrated later, and as
discussed in detail in Ref. [33]. An appropriate value for u, can be
easily determined from experimental compaction wave thickness
data, whereas the value for & is more difficult to determine, but
can usually be estimated from the stress relaxation time measured
by quasistatic compaction experiments.

Constitutive relations needed to mathematically close Eqgs.
(1)=(5) include expressions for Py(p;,T), e,(ps,T), B(ps. b, ),
f(&), m., and . To this end, we use the Hayes equation of state to
describe the thermodynamics of solid HMX [1]. The Helmholtz
free energy for an initially stress-free solid is given by

\Ifs(ps,T)=cU[(T— To)<1 + _<1 _ pm)) . T1n<5>]
Pso Ps T
N-1
+t||:<&) —(N—1)<1_@>_1:|, (6)
Pso s

from which the thermal and caloric equations of state can be ob-
tained:

Py(p,,T) = p?

N
=c,g(T=Ty) + %[(&> - 1], 7)

&px T Pso
v,
es(p,wT) = \Ps_ T S =c (T TO) (l - pYU)
ar Py psO Ps
N-1
+r1[<&) —(N-1)<1—@)-1]. (8)
Pso Ps
Here, A=1;N(N—1)p,, and N are the first and second Hayes pa-

rameters, respectively. Values for the parameters contained in Egs.
(7) and (8) are listed in Table 1. Expressions for 8 and f are based
on the quasi-static compaction data for granular HMX reported by
Coyne et al. [24], and Elban and Chiarito [25], and are given by
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Table 1 Parameters values used in the Hayes equation of
state for solid HMX [1]

Parameter Value Units
A 1.35x 10" Pa
¢ 150X 10° Ji(kg K)
g 2.10X 103 kg/m?3
N 98 ..
T, 300 K
P 1.90% 10° kg/m?
~ ~ 1
B 5= 1~ phl=@=a)
k= (p—¢)
and
f(¢)=¢f+c(¢—¢f), (10)

where ,=6.0 MPa, ¢=0.913, k=0.03, and q'>f=0.655. This ex-
pression for B contains a weak (linear) dependence on solid den-
sity as required by thermodynamic restrictions [26]. This con-
straint may be relaxed with minimal consequences on the
predicted solution, but is retained here for completeness. Further,
we take w.=100 kg/(s m) so that the model predicts compaction
zone lengths and wave speeds commensurate with experiments
[27]. A baseline value of £=9.39 X 107!? s is used in this work as

suggested by the fast relaxation response of ¢ observed in quasi-
static compaction experiments. Because the value of u is difficult
to determine from dynamic compaction experiments, it will later
be varied to characterize its effect on compaction wave structure
and localized heating. Equations (1)—(5) and (7)—(10) constitute a
nonstrictly hyperbolic system of nine equations and nine un-
knowns that can be numerically solved for the bulk material re-
sponse provided that suitable initial and boundary conditions are
supplied. Because the equations are hyperbolic, compaction wave
structures having discontinuous shocks are admitted.

An important aspect of this work is the localization of bulk
thermal energy at the grain scale to form hot-spots. It is, therefore,
convenient to obtain an expression for the evolution of granular
solid internal energy in terms of Lagrangian derivatives. Using the
Eulerian form of mass and momentum conservation to eliminate
kinetic energy from the total energy equation, and introducing the
Lagrangian derivative d/dt= d/ dt+ud/ dx, we obtain

de _de, dB

= 11
dt dt dz (1)
where
%z(Ps_ﬁ)d_ﬁb Bd¢+ Pdps d_qz d_g
At~ pp di pdt ptdt  di  di
Compaction Compression (12)
and
dB ,8
— == 13
m (¢ P). (13)

Equations (12) and (13) govern the evolution of thermal energy
for the pure phase solid and compaction potential energy for the
granular solid, respectively. Thermal energy evolution is affected
by both compaction and compression, denoted by de,/dt and
de,/dt, whereas compaction potential energy is affected only by
changes in the elastic component of solid volume fraction given
by d/dt(¢p— ). It is shown in Ref. [26] that de 4/ dt is the result of
compaction induced dissipative processes that lead to an increase
in granular solid entropy, whereas the compression energy is re-
coverable. It is important to note that while the bulk model does
not attribute dissipation to specific processes, it can be easily cor-
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Intergranular
Contact Surface

Fig. 2 An illustration of the intergranular contact geometry
used for the thermal energy localization strategy

related with loading—unloading compaction experiments to accu-
rately reflect the measured net dissipated work that will constrain
the thermal energy localization strategy. Various energetically
consistent localization strategies can be formulated in a manner
compatible with grain scale heating mechanisms that are believed
important for a given problem. One such strategy is outlined in the
following section.

3 Grain Scale Heating Model

Because the bulk material response gives no information about
the magnitude and duration of temperature fluctuations that are
important for combustion initiation, it is necessary to rationally
localize bulk thermal energy to describe hot-spot formation at the
grain scale. Here, we modify the localization strategy of Gonthier
[7] to account for compressive heating and phase change induced
by shock compaction. The localization strategy is consistent with
mesoscale simulations and grain contact mechanics which indi-
cate that the applied bulk load is transmitted through the material
by intergranular contact [28]. This contact results in inelastic de-
formation and friction near contact surfaces. As illustrated in Fig.
2, we track the evolution of thermal energy within solid regions
surrounding intergranular contact surfaces referred to as localiza-
tion spheres. The number of localization spheres per unit volume,
n(x,1), is related to the number of contact points per grain, vy, and

the grain number density by n,;%yn; the prefactor 1/2 appears
because each localization sphere involves contact between two
grains. The localization spheres are assumed to be evenly distrib-
uted, and have radii r(, where r0=R(%7)_1/3. The expression for n,.
can be combined with the expression for ry, to obtain n,
=¢/ (%777‘8); thus, all solid mass is encompassed by the localiza-
tion spheres.

Many phenomenological strategies can be established to pre-
scribe the partitioning of dissipated energy within a localization
sphere based on the underlying physics. Because there exists un-
certainty about stress and temperature distributions within the
neighborhood of intergranular contact surfaces for real systems,
and their dependence-on loading rate, microstructure, etc., we
choose a simple, but plausible, strategy that uniformly deposits
bulk dissipated compaction energy (given by de/dt) within ex-
panding material volumes of radius r.(x,7)<r, centered at the
contact surfaces; this radius defines a localization center. The lo-
calization center should encompass all material involved in dissi-
pative heating due to friction and plastic deformation; thus, its
volume should increase due to plastic flow. The initial value for r,.
is taken as the radius of the intergranular contact surface, a, at the
onset of plastic deformation within the grain. This assumption is
reasonable in that, prior to the onset of plastic deformation, most
dissipated energy will be due to intergranular friction and will,
thus, be localized near the contact surface within the region r
<r.(x,0). We equate the volumetric rate of work done by the
plastic flow stress Py to the bulk volumetric compaction induced
dissipated energy given by Eq. (12); the following evolution equa-
tion for r,. results:
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dre __ psd  dey

= . 14
dt 47Tncr§Py dt (14)

Though we uniformly deposit dissipated energy within the local-
ization centers, and describe the evolution of r. solely due to
plastic deformation, it is possible to develop more refined local-
ization strategies that better describe both frictional and plastic
heating, and viscous dissipation with a liquid phase, using this
modeling framework. Such descriptions may require the introduc-
tion and evolution of multiple localization volumes within a single
localization sphere. We also assume here that compressive heating
is a bulk process and, thus, uniformly affects all material within a
localization sphere; details are given below.

For consistency, we require that the evolution of mass, linear
momentum, and thermal energy at the grain scale locally equals
that given by the bulk model. It can be easily shown that the mass
and linear momentum constraints are trivially satisfied by requir-
ing that the velocity of each grain is given by the bulk velocity u;

ie.,
d (fL ) d( L o
— pypdx | = — J pnAm f rdrdx |,
dr\ J, dr\ J, 0
af [ dud af 4 ! 2drd
— udx | = — nudm | ridrdx |,
a\ ) P ar\ J P |

where n.= ¢/ (%Trrg), r is radial position within the localization
sphere, and x is position within the granular system of total length
L. The thermal energy constraint is given by

L L o
d d »
— pspedx | = — pndm | rédrdx |, (15)
ar\ J, ar\ J, 0

where ¢ is the specific internal energy of the solid within a local-
ization sphere. Throughout this paper, variables labeled with a

“hat” (:) are associated with the localization sphere and vary not
only with x and ¢ but also with r. The left-hand side of this equa-
tion is the evolution of bulk thermal energy. The right-hand side of
this equation is the evolution of integrated thermal energy at the
grain scale. It is important to note that bulk compression and
expansion will cause the radius of both the spherical grains, R,
and the localization spheres, r(, to change. In this study, we as-
sume that the rate of change of localization radius is small com-
pared to the compaction wave speed (i.e., (dry/dr)/D < 1.0, where
D is compaction wave speed) and, thus, we take r( to be constant
in our localization model. In particular, we take r0=R0(%7)71/3 for
subsonic compaction waves and r0=Rsh(%y)_1/3 for supersonic
waves, where R, is the ambient particle radius and Ry, is the
shocked particle radius whose value is determined by Rankine—
Hugoniot shock relations. We believe this assumption to be rea-
sonable for all compaction waves studied in this work. With this
assumption, and using the definition of n., Eq. (15) reduces to

de, 3 (" . dé
i(x,t) = —3J rz—e(x,r,t)dr.

16
dt rod, dt (16)

The evolution of thermal energy within a localization sphere is
given by

dé 1 4 S, S
E e 2P+t 2, (17)

where q:—kﬂf/ dr is the conductive heat flux, § 4 and 3'!, are the
volumetric heating rates due to inelastic compaction and compres-
sion, respectively, and py is the initial solid density for subsonic
waves and the shocked solid density for supersonic waves.
Though we assume that the localization sphere is incompressible
throughout the compaction zone (i.e., ro=constant), bulk com-
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pressive heating is still accounted for at the grain scale by the

source term 3‘,3. Energetically consistent expressions for .§¢ and 5,,
are obtained by substituting Eq. (17) into Eq. (16), integrating,
imposing the adiabatic conditions ¢(x,0,7)=g(x,ry,r)=0 and
equating the result to Eq. (12). The adiabatic condition at r=r is
a consequence of assuming a symmetric grain packing arrange-
ment.

ro |® de
. po—2(x,t) for 0<r=<r/x1),
Sy, 1) =9 Lr(x,1) dt

0 for r (x,1) <r<r,

(18)

A de

S,(x.1) = po—2(x.1). (19)
dt

Here, functional dependencies are explicitly shown to indicate the

coupling of bulk and grain scale variables. The bulk and grain

scale models are coupled in an energetically consistent manner

through the source terms S s and S - Though this energy partition-
ing strategy is not unique, we believe that it reasonably describes
grain scale localized heating based on the success of a similar
strategy used by the lead author to predict experimentally mea-
sured sustained combustion thresholds for granular HMX due to
mild impact [7]. Nonetheless, this partitioning should be more
carefully scrutinized in the future based on numerically resolved
mesoscale simulations.

We also account for the energetics of solid—liquid phase change
as it may significantly affect hot-spot temperature. Further, HMX
is known to undergo phase change prior to combustion. HMX
melts near T‘;:SZO K at atmospheric pressure PZ: 100 kPa; the
latent heat of fusion is ‘12,=220 kJ/kg. An estimate for the varia-
tion in melt temperature with pressure can be determined by the
Kraut-Kennedy relation (a detailed discussion of the application
of this relation to HMX melting is given in Ref. [29]). For the
highest pressures considered in this work, P,,~ 500 MPa, the melt
temperature increases to only 7,,~ 600 K. Thus, we assume iso-
thermal phase change, and take

R Cvd—T for T+ T°,
de_g (20)
| s
q?n—x for T= T?n
dt

where O0<y=<1 is the liquid mass fraction. For simplicity, we
assume that the value of the specific heat ¢, is constant and the
same for both the solid and liquid, and that the solid and liquid
densities are equal; as such, we only describe leading-order effects
of phase change energetics.

4 Analysis and Discussion

Predictions are given for the bulk and grain scale response of
inert HMX (¢(=0.81) due to steady compaction waves. Though
the analysis of steady waves is incapable of describing time-
dependent phenomena associated with variable speed impact or
wave propagation through materials having spatially nonuniform
porosity, it does provide a simple means of analyzing the more
fundamental problem of dynamic compaction of spatially homo-
geneous materials by constant speed impact. To this end, the
model equations are expressed as a coupled system of partial dif-
ferential equations (PDEs) in a steady wave frame using the trans-
formation é&=x—Dt and v=u—D, where D is the wave speed, and
¢ and v are position and velocity measured relative to the wave.
Equilibrium solutions of the steady equations are first analyzed to
identify compaction wave end states, and these end states are
compared to experimental data. Next, the initial boundary volume
problem (IBVP) defined by the steady equations, the wave speed,
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and the ambient material state, is numerically solved to predict
bulk compaction wave structure and localized heating within the
compaction zone. Predicted structures for both subsonic and su-
personic compaction waves are illustrated for speeds of D
=748.2 and 3500 m/s corresponding to impact speeds of u,
=106 and 1053 m/s, respectively; these speeds are chosen be-
cause they demonstrate interesting features that are also observed
in mesoscale simulations. The sensitivity of the model to varia-
tions in key parameters is then explored. Lastly, model predictions
are compared to the predictions of Menikoff and Kober [11] ob-
tained by detailed mesoscale simulations.

The steady model equations describing compaction wave struc-
ture are given by

dp $(1-¢)
—=—(P;-p), (21)
dg U e
dé 1 -
—=—(f-¢), 22
Rk (22)
aT PT 20T S S
—=g[—2+——}+—‘L+—p—, (23)
ﬂg vLor ror PsoCylU PsoCyV
% AT 20T S S
_"zcv“[—2+——}+—t+ XY
ﬁf qmU ar ror PsoqdmV PsodmV
d d
dre __pd dey (25)

¢~ 47Tncr§Py dé’

where a=k/(pyc,) is the thermal diffusivity of the pure phase
solid. All remaining variables can be expressed as a function of

the integration variables ¢, ¢, T, X and r. To this end, the con-
servation equations (i.e., the first three components of Egs.
(1)-(4)) expressed in the steady frame are homogeneous ODEs
that can be directly integrated, and the initial conditions ¢(0)

=d(0)= by, Ty=300 K, and Py=0 Pa applied, to obtain the fol-
lowing algebraic relations:

02 2
e+ _—+—=—.

2 p 2
Here, the notation subscript “0” refers to properties of the ambient
state. These relations, together with the equations of state for the
pure phase solid, given by Egs. (7) and (8), are sufficient to ex-
press the bulk solid variables p,=p/ ¢, vy, and P;=P/ ¢ in terms

pv=-poD, pv’+P=pD?, (26)

of ¢ and ¢. The required mathematical operations are straightfor-
ward, and are omitted for brevity. Initial conditions for the re-
maining integration variables are 7(0,7)=T, £(0,r)=0, and
r(0)=1.6wR"Y/(2E") for an unshocked solid, where R*=R/2,
and E*=E/(2(1-17)). Here, E, Y, and v are the elastic modulus,
yield strength, and Poisson’s ratio for the pure solid; we take R
=25 um, E=24 GPa, Y=0.37 GPa, and v=0.2 which are repre-
sentative of HMX. Initial conditions for a supersonic wave are
based on the shocked state rather than the ambient state. The
shocked state is determined from the Rankine—Hugoniot relations
given in vector form by [w]*D=[f(w)]f, where w and f(w) are
given by Egs. (2) and (3), and the notation [-]* denotes a jump in

the enclosed quantity across the shock. Because [¢]'=[¢] =0
across the discontinuity, these relations reduce to the classical
ones for a pure phase solid. These classical relations are combined
with Egs. (7) and (8) to obtain a single transcendental expression
for pg which is solved numerically using a Newton—Raphson
technique. With pg, known, all remaining shocked solid variables

can be determined. Equation (23) is integrated for 7# 7° . Equa-
tion (24) is integrated through the melt region (0<y<1) for

which 7=7°.

Transactions of the ASME



Equations (21)—(25) are numerically solved using a Method of
Lines (MOL) technique. Central differencing is used to approxi-
mate the radial derivatives on a N,=100 node grid, and the result-
ing system of ODEs in ¢ are integrated using the implicit routine
ODEI15s contained in the MATLAB software package. The numeri-
cal algorithm is nominally fourth-order accurate in & and second-
order accurate in r. Numerical convergence is demonstrated in
Sec. 4.2 based on the variation in grain scale heating predictions
with increasing grid resolution. A typical simulation requires ap-
proximately 2 min of CPU time on a Linux, 2.0 GHz, Pentium IV
workstation.

4.1 Compaction Wave End States. Compaction wave end
states are obtained by an algebraic analysis that is independent of
wave structure; as such, this analysis provides no information
about hot-spot formation but does give a simple framework for
comparing bulk predictions to experimental data. From Egs.
(21)—(25), it is seen that equilibrium states, formally correspond-

ing to £——, are defined by P,= and $=f, with radially uni-
form temperature 7 and solid mass fraction x within the localiza-

tion sphere. The equilibrium value of T approaches the bulk
equilibrium temperature 7 as a consequence of having energeti-
cally consistent bulk and grain scale models. It is conventional to
analyze potential end states geometrically in the bulk pressure-
specific volume (P-v) phase plane. An expression for the Rayleigh
line in this plane is obtained by combining the integrated form of
mass and momentum conservation, given by the first and second
expressions of Eq. (26), to obtain

2
P= <2> (vo—v).
Yo

For a given ambient state, the slope of this line in the P-v plane is
dependent only on compaction wave speed D. The expression can
be combined with the integrated form of the energy equation to
obtain the Hugoniot curve for the granular solid:

27)

e—ey= %P(VO— V). (28)

This expression gives the mass specific work done in compressing
the granular material from its initial specific volume, vy, to its
final values P and v. Again, not all of this work is recoverable due
to internal dissipation. Using Egs. (7) and (8), and the equilibrium

conditions P,=pB(p,, b, P) and p=f(¢), compaction wave end
states are given by the intersection of the Rayleigh line and Hugo-
niot curve. The piston speed is then computed from the wave
speed and the equilibrium value of v by u,,:(l —v/vy)D.

Figure 3 summarizes predicted compaction wave end states in
the P-v and D-u, phase planes for granular HMX having ¢
=¢;=0.655, and compares these predictions to the experimental
values reported by Sheffield [30] and Sandusky and Liddiard [31]
for granular HMX having similar initial densities. Also shown are
the predicted shock Hugoniots for solid HMX and experimental
data for PBX 9404, a pressed plastic bonded explosive consisting
of 94% granular HMX and 6% binder. The PBX data [32] is
included to illustrate that the shock Hugoniot for solid HMX is
approached by materials possessing a high granular HMX loading
density. Several features are noteworthy. First, as seen in Fig. 3(a),
the model reasonably describes the P-v response of the initially
stress free material. Low pressure compaction of loose HMX
(v9=0.79 cm3/g) is largely inelastic resulting in a significant de-
crease in material volume due to grain fracture and rearrangement,
and plastic deformation. The material stiffens as the grains con-
solidate at higher pressure, and the granular material response
tracks that of the pure phase solid. Second, the model accurately
describes the D-u), response as shown in Fig. 3(b). Weak impact
results in low pressure compaction waves that propagate at speeds
much less than the ambient solid acoustic speed (D<cy
=2767 m/s) due to internal dissipation. There is predicted a
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Fig. 3 Predicted and measured Hugoniot curves for granular
and solid HMX in (a) P-v and (b) D-u, planes. The PBX 9404
data is for a pressed mixture of 94% granular HMX and 6%
plastic binder.

nearly linear increase in wave speed over the range of impact
conditions considered in this work. The minimum predicted wave
speed for the existence of a steady compaction wave is D
=290 m/s. This analysis demonstrates that the model reasonably
captures experimentally measured results.

Finally, we remark that the Hugoniot curves depend on initial
material density which is characteristic of materials with memory.
Dynamic loading of precompacted materials (i.e., ¢y > ¢y) exhibit
time-dependent, two-wave structures for a range of impact speeds
(typically 10<<u,, <100 m/s) that depend on ¢, which are similar
to those in dynamically loaded solids possessing a Hugoniot elas-
tic limit. Such compaction waves consist of a lead viscoelastic
precursor followed by a slower viscoplastic wave. The inelastic
component of solid volume fraction is constant through the pre-

cursor (=), whereas it irreversibly increases through the vis-
coplastic wave. Here, the meaning of the terms viscoelastic and
viscoplastic are conventional [23] in that the granular solid stress
depends on both volumetric strain and strain rate (loading history)

by its dependence on ¢ and ¢, respectively. A consequence of this
modeling attribute is that experimentally observed features such
as strain hardening, stress relaxation, and hysteresis can be pre-
dicted; a recent discussion and analysis is given in Ref. [33]. We
restrict our analysis in this paper to steady waves, though some of
these waves still retain features of unsteady two-wave structures.

4.2 Compaction Wave Structure. Results for a typical sub-
sonic and supersonic wave structure are presented in this section.
For both cases, the ambient stress free material has a solid volume
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Fig. 4 Predicted variation in bulk quantities through the compaction zone for ¢,=0.81, u,=106 m/s, and D=748.2 m/s: (a) Solid
volume fraction, (b) solid density, (c) velocity, (d) solid pressure, (e) solid temperature, and (f) grain number density.

fraction of ¢,=0.81; thus, the material has been pre-compacted.
This value is chosen so that we can directly compare our model
predictions to results of the mesoscale simulations performed by
Menikoff and Kober [11] as discussed in Sec. 4.4.

Figure 4 gives predictions for the variation in bulk quantities
through the compaction zone for u,=106 m/s and D
=748.2 m/s. Here, the head of the compaction wave is located at
&£=0 mm and its structure lies in the region §<<0 mm. This piston
speed is only slightly higher than that needed for a steady wave to
exists; at lower speeds, unsteady two-wave structures are pre-
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dicted. Remnants of the viscoelastic precursor are evident in the
figure. To our knowledge, experimental evidence of such precur-
sors resulting from mild impact is lacking, possibly because of
inadequate resolution, though mesoscale simulations clearly indi-
cate the presence of such waves [11,34]. A continuous, dispersed
structure is predicted. All variables shown monotonically increase
from their initial to final values through both the viscoelastic and
viscoplastic regions of the compaction wave. As seen in Fig. 4(e),
a peak bulk temperature of approximately 7,=306 K is predicted,
which is well below the ignition temperature of HMX (T},
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Fig. 5 Predicted variation in the compressive (é,,) and inelas-

tic (§4,) heating rates through the compaction zone for ¢,
=0.81, u,=106 m/s, and D=748.2 m/s

~600 K), yet confined DDT experiments clearly indicate the on-
set of sustained combustion for piston speeds of this magnitude.
Thus, ignition models based on bulk temperature are too insensi-
tive to accurately predict combustion thresholds.

We now describe the predicted localized heating response of the
material. The number density of localization sites surrounding in-
tergranular contact surfaces, n,., increases as the material is com-
pacted (see Fig. 4(f)). The volumetric compressive and inelastic

heating rates within the vicinity of these localization sites, S » and

3‘4,, respectively, are shown in Fig. 5. For this impact speed, com-
pressive heating is several orders of magnitude less than the maxi-

mum inelastic heating rate (§¢z 1.28 GW/cm?) and is thus in-
consequential. The corresponding grain and localization radii, and
grain scale temperature, are shown in Fig. 6. Inelastic heating
occurs within the spherical volume defined by the localization
center radius r,; as mentioned, this volume characterizes the mass
of plastically deformed material due to integranular contact near
the surface located at r=0 um. A measure of plastic strain for our
localization model is the fraction of solid volume affected by plas-
tic work, €,=(r./ ro)°. For this simulation, €,,=0.0089; thus, little
material is plastically deformed. The viscoelastic region of the

wave (for which ¢=d,) induces a weak hot spot near the inte-
granular contact surface which is rapidly quenched by thermal
conduction prior to the onset of viscoplastic heating. More intense
precursor hot spots may be induced under different loading con-
ditions. Plastic work occurring within the viscoplastic region is
highly localized near the contact surface resulting in a peak hot-
spot temperature of 970.3 K. Temperatures of this magnitude may
trigger prompt combustion initiation consistent with DDT experi-
ments. However, the hot-spot duration is short (relative to the
compaction zone length) as it contains insufficient thermal inertia
to overcome conductive losses. A fully coupled thermochemical
analysis would be required to determine whether such a hot spot
will result in sustained combustion; nonetheless, the likelihood of
a thermal explosion occurring within the compaction wave trig-
gered by our predicted hot-spot temperature is analyzed below
based on a asymptotic analysis. Importantly, melting is shown to
reduce the predicted hot-spot temperature by 100.4 K based on an
equivalent simulation without phase change. The melt region is
identified in Fig. 6(b). An estimate for the volume fraction of
liquid formed is given by ¢;=(r;/r,)> ¢, where r, is the liquid core
radius. For this simulation, ¢;=~0.0038 < ¢; thus, we are justified
in ignoring the presence of a bulk liquid phase.

To estimate the explosion length induced by the predicted hot-
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Fig. 6 Predicted variation in (a) grain radius, localization radii,
and (b) grain temperature through the compaction zone for
¢$0=0.81, u,=106 m/s, and D=748.2 m/s

spot temperature within the compaction zone, we perform a ther-
mal explosion analysis for a two-phase reacting system (HMX
— product gas). To this end, we use the rate expression for HMX
combustion given in Ref. [35], and assume (1) a well-stirred re-
actor, (2) an incompressible solid, (3) there is initially no gas
present, and (4) the solid and product gas are in thermal equilib-
rium. With these assumptions, a two-phase thermal explosion
model can be expressed by

psOd) + pg¢g = PsOd)()v (29)
p5'0¢es + pg¢g€g = ps()d)es()i (30)
d\ Ti‘)
—=Z(1-Nexp|- =, 31
=2 )exp< - (1)
L S (32)
p50¢+pg¢g ¢O
d+d,=1, e=c,T+q, e,=c,T. (33)

Equations (29) and (30) are statements of mass and energy con-
servation, respectively. Equation (31) gives the evolution of reac-
tion progress (0=<A<1, where A=1 is complete reaction) and Eq.
(32) relates the reaction progress variable \ to the solid volume
fraction ¢. Equation (33) gives the saturation constraint and equa-
tions of state for the solid and gas, respectively. Other variables in
these equations are the gas-phase density and volume fraction, p,
and ¢,. Constant parameters include the pre-exponential factor
7Z=5.0X10" 57!, activation temperature T+=2.65x 10* K, gas
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phase specific heat c,,=1000 J/(kg K), and specific heat of com-
bustion ¢=5.84 X 10° J/kg. The model consists of seven equa-
tions for seven unknowns and is, thus, mathematically closed.
These equations can be nondimensionalized and combined, with
the energy equation [Eq. (30)] differentiated with respect to time,
to obtain an evolution equation for temperature:

dT"  m[m+ (1 -m)T'T T -1
o exp - (34)
dt 11—+ m T
where  T°=T/T,. ¢ =t/[(m/Z)exp(T*IT)]. m=TIT%

=cyel ¢y, and m=q/(c,T,); here, T, is a characteristic hot-spot
temperature. We assume 77 << 1, and seek a first-order asymptotic
solution of the form 7"=1+T}(r). Substituting this expression
into Eq. (34) gives the following ODE to leading order in 7r;:

CLy Jexp(T))

— =(1 —m+ m3)ex .

d 2+ m3)eXplsy
This equation can be analytically solved, with the initial condition
T,(0)=0 applied, to obtain T)=—In[1—(1—1,+;)¢"]. This solu-
tion becomes unbounded for r*=(1—,+3)~" which gives an
estimate for the time to thermal explosion. An estimate for ther-
mal explosion length with respect to the steady wave is then given
by

(35)

c,T:D ( )
expl — .
ZTHq + (c, = c,)T.] T,

For the subsonic compaction wave structure discussed above, we
take 7.=970.3 K resulting in /,,=0.092 um. Because this value
for explosion length is less than the predicted hot-spot length
shown in Fig. 5, we anticipate that the hot-spot temperatures in-
duced by this wave are sufficient to trigger sustained combustion
of the material in agreement with experimental observations of
DDT for granular HMX.

The numerical convergence of our algorithm is briefly demon-
strated for the subsonic compaction wave structure just discussed.
The plots in Fig. 7 show the predicted variation in (a) the grain

lex = Dtex = (36)

temperature 7(£,7=0 um), and (b) the radial grain temperature

distribution 7(£=-12.07 mm,r), with the number of radial grid
points N, for 10=<N,=<500. Because the peak grain temperature
occurs at or near r=0 um in all of our simulations (and at é=
—12.07 mm for the present case), we believe it is an appropriate
quantity for establishing convergence. For the cases shown, little
difference in the predicted solutions exists for radial grids in ex-
cess of N,=100 nodes, though a significant increase in computa-
tional time occurred for approximately N,>200 due to overhead
of the MATLAB software used to integrate the model equations.
Thus, we chose N,=100 for all simulations performed in this
work.

Figure 8 gives predictions for the variation in bulk quantities
through the compaction zone for u,=1053 m/s and D
=3500 m/s. This simulation illustrates the structure of a typical
supersonic compaction wave, and is the maximum impact speed
considered in this work. Because D>c ,=2767 m/s, a discon-
tinuous shock is predicted at the head of the compaction wave. All
solid thermodynamic variables increase across the shock as does
the particle velocity measured relative to the lab frame. However,
the solid volume fraction is continuous across the shock because
the dynamic compaction equation is a linearly degenerate charac-
teristic field. As seen in Fig. 8(a), a thin viscoelastic region im-
mediately follows the shock through which ¢= ¢y, and it is fol-
lowed by a thick viscoplastic region through which ¢ increases.
The wave strength is nearly sufficient to compact the material to
its theoretical maximum density (¢=1). It is noted that the com-
paction zone length is approximately 250 um, and is approaching
the order of a single grain diameter. The bulk temperature is seen
in Fig. 8(e) to reach a maximum value of T,=663.0 K> Tiq sug-
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Fig. 7 Convergence of the numerical algorithm for the sub-
sonic compaction wave structure: (a) predicted variation in
grain temperature at the center of the localization volume
through the compaction wave, Ty,in=T(§,r=0 um); (b) radial
distribution of grain temperature at the location £=-12.07 mm,
Tgrain= T(§=-12.07 mm, r). Here, N, is the number of radial grid
points within the localization sphere.

gesting that complete phase change and bulk combustion of the
material would occur. This result is plausible for such high impact
speeds, though the localized heating prediction indicates that ma-
terial in the vicinity of grain contact surfaces is not uniformly
heated to high temperature. The volumetric compressive and in-
elastic heating rates are shown in Fig. 9. The compressive heating
rate is discontinuous at the shock; while significantly larger than
that for the subsonic case, it remains several orders of magnitude
smaller than the peak inelastic heating rate. This result does not
imply that compressibility is unimportant altogether as it does
give rise to the formation of the lead solid shock, but its role in
localized heating remains inconsequential. The inelastic heating
rate is continuous throughout the compaction wave (not apparent
in the figure due to the plot scale), reaching a maximum value of

§4=2.4X10* GW/cm® immediately following the shock. The
predicted evolution of grain radius, localization radii, and grain
scale temperature are shown in Fig. 10. Both the grain and local-
ization radius, R and r, respectively, discontinuously decrease
across the shock due to the increase in solid density, and subse-
quently decrease slightly through the compaction zone. Most of
the solid mass has plastically deformed as reflected by the esti-
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mate for volumetric plastic strain €,=(r./ r0)>=0.812. All material
within the localization sphere is simultaneously heated to tem-
perature T,=332.6 K across the shock. Subsequently, inelastic
heating causes the temperature near the contact surface to rapidly
increase to approximately 2700 K, while the temperature in the
grain interior gradually increases due to progressive spreading of
plastic deformation. Thermal conduction plays an insignificant
role at this impact speed resulting in long duration hot spots (rela-
tive to the wave thickness) that would rapidly induce combustion.

Journal of Applied Mechanics

An explosion length of /,,<1 nm is predicted by Eq. (36) indi-
cating prompt initiation of sustained combustion. The phase
change front is evident near the exterior of the localization sphere.
The volume fraction of liquid formed is ¢,=(r,/ry)>p=0.47.
Also, gas phase products likely exist at elevated temperature due
to sublimation and vaporization. Though ignored here, these re-
sults suggest that multiphase fluid mechanics may play an impor-
tant role in hot-spot formation for strong impact.

JULY 2005, Vol. 72 | 547



25210 15
s“/
ol ¢ 12
[l
/
< 1.5} ! 9
§ ; §
2 !
g : g
< o 1 R [ 6 &
[//] (3 '.' [7)]
0.5t / 3
"
.-", _J
87 205 0.3 0.1 o
£ (mm)

Fig. 9 Predicted variation in the compressive (é,,) and inelas-

tic (§4,) heating rates through the compaction zone for ¢,
=0.81, u,=1053 m/s, and D=3500 m/s

4.3 Parametric Response. Simulations are performed to de-
termine the model’s sensitivity to variations in key parameters
such as impact speed u,, initial solid volume fraction ¢, and
dimensionless ratio Q= u./(ps,D*f). Here, () is the ratio of re-

laxation rates at which the no-load volume fraction ¢ and the total
solid volume fraction ¢ approach their respective equilibrium
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Fig. 10 Predicted variation in (a) grain radius, localization ra-
dii, and (b) grain temperature through the compaction zone for
$y=0.81, u,=1053 m/s, and D=3500 m/s
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condition given by ¢=f and P,=f. These parameters are chosen
because both u,, and ¢, are easily controllable in experiments, and
because () is difficult to experimentally characterize, particularly
for dynamic compaction. Baseline values chosen for this study are
u,=150 m/s, =081, and Q=1.0X10* [with u,
=100 kg/(m s)]. This value of u,, is sufficiently large to guarantee
that steady compaction waves are predicted for the entire range of
¢bp (0.655< ¢py=<0.93) considered.

We first vary piston impact speed over the range 100<u,
<1100 m/s to determine its influence on bulk compaction and
grain scale heating; the predictions are summarized in Fig. 11.
Subsonic wave structures are predicted for approximately u,
<746 m/s, and supersonic structures are predicted for piston
speeds in excess of this value. Compaction wave speed increases
from a value of D=7432m/s for u,=106 m/s to D
=3500.0 m/s for u,,=1053.0 m/s; these piston speeds give rise to
the structures shown in Figs. 4 and 8, respectively. Final solid

volume fraction, ¢, and no-load volume fraction, ¢, increase with
impact speed as seen in Fig. 11(b). For impact speeds within the
range 106 =<u, <300 m/s, there is predicted a relatively steep rise
in final solid volume fraction due to material crush-up, whereas a
more gradual increase in final solid volume fraction is predicted
for higher speeds due to material consolidation and stiffening.
Stronger impact results in shorter compaction zone length [Fig.
11(c)], greater volumetric plastic strain [Fig. 11(d)], and more
significant liquid formation due to phase change [Fig. 11(e)]. The
predicted data for compaction zone length and liquid volume frac-
tion in Figs. 11(c) and 11(e) are curve fit due to small, nonsmooth
variations in the computed values. Compaction zone length was
numerically defined by the &location for which ¢(&)—@(&_))
<1.0X 10~ mm, where ¢(£) is the value of solid volume frac-
tion at nodal point &;. Liquid volume fraction was estimated based
on the location where y=0.5 within the phase change front.
These results suggest the following. First, the compaction zone
length is slowly approaching the order of a grain diameter (e.g.,
50 wm) with increasing impact speed; because the compaction
process is driven by interaction between grains, it is reasonable to
expect that the compaction zone length should approach this value
in the limit of strong waves. As compaction zone length data
becomes available for high impact speeds, it is possible to match
this data by varying the value of the relaxation parameter u.
Second, a significant increase in equivalent volumetric plastic
strain occurs with increasing impact speed. While detailed mesos-
cale simulations of granular systems (~500 grains) may reason-
ably capture the mechanics of plastic deformation for strong im-
pact, they probably lack the resolution needed to accurately
capture the plastic zone for weak impact, particularly without the
use of dynamically adaptive grids. The phenomenological model
described in this paper, though simplistic, is capable of predicting
the average manifestation of localized plastic deformation for a
wide range of impact conditions in a manner consistent with con-
tact mechanics. Third, the amount of liquid formed also increases
significantly with impact speed suggesting that multiphase physics
may be important for strong impact, as previously mentioned.
Figure 11(f) gives the predicted ratio of the maximum grain scale
temperature to bulk temperature, 77, through the compaction zone.
The value of this ratio is in excess of 3.2 for the entire range of
impact speeds considered here, and reaches a maximum value of
77=6.6 for u,=450 m/s. Because the peak grain scale tempera-
ture is considerably larger than the peak bulk temperature, suitable
localization strategies are needed to accurately predict hot-spot
induced combustion of granular HMX (and other energetic solids)
for a wide range of impact conditions. It is possible, however, that
ignition models based on bulk temperature can be used for strong
impact as the combustion rate becomes less sensitive to hot-spot
fluctuations and can be suitably correlated with bulk temperature.
Figure 12 summarizes predictions for the impact of initially
stress free granular HMX having initial solid volume fraction
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Fig. 11

Predicted variation in (a) compaction wave speed, (b) solid volume fraction, (c) compaction zone length, (d) volumetric

plastic strain, (e) liquid volume fraction, and (f) ratio of maximum grain temperature to bulk solid temperature with piston impact
speed for ¢,=0.81. Plots (c) and (e) are curve fits to the predicted data.

within the range ¢;=0.655< ¢, <0.93. Here, it is understood that
all material for which ¢,> ¢, has been pre-compacted and un-
loaded resulting in a strain hardened granular solid of lower po-
rosity than the uncompacted, virgin material. We take u,
=150 m/s for these simulations. There is predicted a nonlinear
increase in both compaction wave speed and solid pressure with
¢, as seen in Figs. 12(a) and 12(c); the corresponding increase in
solid volume fraction is shown in Fig. 12(b). The material
crush-up pressure increases with strain hardening resulting in
greater elastic compaction, wave speeds, and input power for
fixed u,. The input power per unit cross-sectional area, P, is the
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time rate of change of integrated total energy within the material
and is given by P;=P ¢u,. Though not plotted here, the input
power varies from approximately P;=1.38 MW/cm? for ¢,
=0.81 to P;=7.77 MW/cm? for ¢,=0.93. Interestingly, compac-
tion zone length reaches a maximum value near 6.4 mm for ¢,
=0.66. A similar trend was predicted by Powers et al. [8], for the
dynamic compaction of granular HMX. While the origin of this
trend is unclear, it cannot be attributed to recoverable changes in
volume fraction induced by strain hardening because, as opposed
to our more physically realistic model, the model of Ref. [8] does
not account for it; thus, this result is independent of key differ-
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ences in our constitutive theories. The variation in volumetric
plastic strain €, with ¢, is shown in Fig. 12(e). Here, €, de-
creases with ¢, though both the input power and compaction
wave strength increase; a minimum value of €,=0.0112 is pre-
dicted for ¢y=0.93. The number density of intergranular contact
sites is large for densely packed material. As such, the applied
load, assumed uniformly distributed between grains through their
contact surfaces, results in much less localized plastic deformation

than for looser material. Figure 12(f) gives the variation in .§‘¢
within the compaction zone for several values of ¢,. The magni-
tude of the inelastic heating rate increases with ¢, to a maximum

value of .§¢,= 10.4 GW/cm? for ¢y=0.93. The discontinuity seen
in these plots is due to the abrupt onset of viscoplastic heating
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occurring when the pressure reaches that needed for material
crush-up; a detailed discussion of dynamic compaction for strain
hardened material is given in Ref. [7].

When the governing equations are suitably scaled, an important
parameter that appears is the ratio of time scales associated with
the relaxation processes given by Egs. (21) and (22), Q
= u./ (poD?* ) [36]. The value of this parameter can significantly
affect compaction dynamics as illustrated in Fig. 13. Here, we
take ¢y=0.81, u,=106 m/s, and u.=100 kg/(ms), and vary
by several orders so that =0.1, 1.0, and 1.0 X 10*. For each of
these cases, the final equilibrium state is the same (¢=0.936, P,
=130.45 MPa), as is the wave speed (D=748.2 m/s), because ()
only controls that rate at which the compaction end state is ap-
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proached; however, the evolution of grain scale temperature is
compaction rate dependent and will thus vary with €). As seen in
the figure, compaction zone length decreases with increasing )
while peak grain temperature decreases. Importantly, reasonably
small differences in compaction zone length (<4 mm) and peak
grain temperature (<130 K) are predicted for 1.0<Q<1.0
X 10%, whereas significant differences are predicted for approxi-
mately 2<<0.1. Quasistatic compaction data for HMX suggest
that Q) is large [26]; thus, it is unnecessary to determine a precise
value for ) in light of these predictions.

4.4 Comparison with Mesoscale Simulations. Lastly, we
compare in Fig. 14 our model predictions for the variation in
plastic strain and solid pressure within the compaction zone with
those reported by Menikoff and Kober [11] based on two-
dimensional (2D) mesoscale simulations of inert granular HMX
for up=200, 500, and 1000 m/s. We have used initial conditions
similar to those of the simulations. The mesoscale data are run-
ning local averages of the plastic strain field within discrete
grains. The predictions qualitatively agree. Both descriptions in-
dicate that €, is compaction rate dependent, though our descrip-
tion shows more sensitivity. Relative to the mesoscale data, we
underpredict €, for u,=200 m/s; our prediction gives an equilib-
rium value of €,=0.034 whereas the mesoscale data gives a value
near 0.13. Predictions for €, at u,=500 m/s agree well, but we
overpredict its value for u,=1000 m/s. Our pressure predictions
qualitatively agree with the mean axial stress predicted by the
simulations. For u,=1000 m/s, we predict that D=3378 m/s
>c,0=2767 m/s, where cy, is the ambient solid sound speed;
thus, as indicated in the pressure plot, there exists a solid shock at
the head of the compaction wave. Discrepancies between the pre-
dictions are likely due, in part, to numerical resolution, phase
change, and grain packing geometry. Because the mesoscale simu-
lations were performed using a coarse computational grid, it is
likely that thin plastic zones induced by low speed impact were
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not adequately resolved. Our analysis predicts hot-spot volumes
of 92 um? near intergranular contact surfaces for u,=200 m/s;
such small volumes would require significant computational reso-
lution. Further, phase change limits the amount of plastic strain
within the solid. This observation may explain our large value of
plastic strain for u,= 1000 m/s. Further, we assume y=12 inter-
granular contacts/grain that is compatible with a three-
dimensional (3D) packing arrangement, whereas the mesoscale
simulations correspond to a 2D arrangement. Such mesoscale
simulations are needed to provide information about hot-spot dis-
tributions that can be used to improve our localization strategy,
particularly in the absence of experimental data at that scale.

5 Conclusion

An energetically consistent localization strategy for predicting
hot-spot histories for HMX compaction has been presented. The
strategy attributes bulk compaction induced dissipation to plastic
work occurring in the vicinity of intergranular contact surfaces,
and accounts for compressive heating, phase change, and thermal
conduction at the grain scale. Steady subsonic compaction waves
having a dispersed two-wave structure are predicted for mild im-
pact of strain hardened HMX (porosity ~19%), and steady super-
sonic compaction waves having a discontinuous solid shock fol-
lowed by a thin compaction zone are predicted for stronger
impact. Predictions for mild impact (u, <110 m/s) indicate short
duration (relative to compaction zone length) hot-spot tempera-
tures in excess of 900 K that are sufficient to induce sustained
combustion based on a two-phase thermal explosion theory. Grain
scale compressive heating is shown to be largely inconsequential
compared to inelastic heating, and the latent heat of fusion is
shown to reduce peak hot-spot temperatures by over 100 K. An
analysis of the system response to variations in impact speed and
initial solid volume fraction indicates an increase in hot-spot tem-
perature, volumetric plastic strain, and liquid volume fraction with
increasing impact speed at fixed initial solid volume fraction
(¢p=0.81), and a decrease in these quantities with increasing ini-
tial solid volume fraction at fixed impact speed (u,=150 m/s).
Importantly, the ratio of peak grain scale temperature to bulk tem-
perature within the compaction zone is predicted to increase with
impact speed to a maximum value of 77~ 6.6 for u,=400 m/s,
and subsequently decreases as bulk inelastic grain deformation
becomes more pronounced. This large disparity in temperatures
emphasizes the necessity of resolving grain scale temperature
fluctuations that may lead to combustion initiation within the con-
text of engineering scale models for energetic solids. Lastly, the
model qualitatively reproduces features predicted by detailed me-
soscale simulations including localized viscoelastic and viscoplas-
tic heating; as such, it is possible to correlate our localization
model with mesoscale predictions in an effort to develop im-
proved bulk combustion models based on hot-spot formation.
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Introduction

There are classes of quasi-brittle solids where cracks tend to
follow tortuous paths when the local stress or strain conditions for
the crack propagation are satisfied. Examples are ceramics, where
microcracks are intergranular, and concrete, where cracks emanate
from weak interfacial bonds, propagate through the mortar phase,
and go around aggregate particles that act as energy barriers. Dur-
ing the process of microcracking, material grains are severed leav-
ing the strained solid as “damaged.” Such a process alters elastic
moduli and can lead to a strong material anisotropy.

In the absence of any inelastic flow, which is assumed here, the
progressive damage can be modeled using damage mechanics
theories (CDM) [1-4]. Different theories of CDM have been pub-
lished to address diverse characteristics of material inelasticity
associated with damage. One class of damage models that has
received great interest among researchers was published by Ortiz
[1] and Ju [2,3] where a fourth-order damage representation was
employed. The basic approach by Ortiz, which was a stress-based
formulation, was further refined to capture the response of brittle
solids under proportional and nonproportional load paths [5,6], to
model softening and localization phenomena [7,8], to model load
induced damage in ceramics [9,10], and to model concrete inelas-
ticity using a strain-based formulation [11].

Yazdani et al. [12] reported that a problem arose when a bilin-
ear damage function was used instead of the logarithmic one that
had been utilized in the original models. They reported that an
apparent snapback was observed in the solution, for the uniaxial
stress path, in the strain-softening regime regardless of the slope
used. Although it is recognized that some physical damage pro-
cesses do lead to localized deformations, the term apparent snap-
back is used in this paper to refer to the development of an inter-
nal contradiction in the damage model itself where snapback in
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A Method to Generate Damage
Functions for Quasi-Brittle Solids

In continuum damage mechanics theories, damage functions are identified based on
experimental records. These functions also serve as strain hardening-softening functions
similar to the conventional plasticity formulations. In a class of damage theories de-
scribed in this paper it will be shown that if care is not taken, internal contradictions will
arise as manifested by a snapback in the strain—stress space. This paper establishes a
formal method by which different damage functions can consistently be developed lead-
ing to no snap-back in the solution. [DOIL: 10.1115/1.1935524]

the deformation is predicted even though the theory was not struc-
tured to capture this aspect of material response. In this paper, we
will examine the problem further, and we will provide a formal
method with theorems and associated proofs by which different
damage functions could consistently be developed leading to no
snapback in the solution.

General Formulation

It is assumed that damage remains distributed within the repre-
sentative volume element. This physically corresponds to the ex-
istence of a multitude of microcracks uniformly distributed within
the material element. It is further assumed that neighboring or
constraint equilibrium states exist for all irreversible processes.
For small, rate-independent and isothermal deformations, and in
the absence of any body couples, a thermodynamic potential can
be used to construct the general formulation. Adopting a stress
space formulation in which only mechanical deformations are
considered, the Clausius—Duhem inequality yields:

G-0:6=0 (1)

in which the thermodynamic state function is represented by
G(o,k) as the Gibbs free energy (GFE) and the strain tensor is
denoted by &. The Cauchy stress tensor is identified as o and k is
used as an internal variable accounting for the load induced dam-
age accumulation in the material. The symbol “:” indicates the
tensor contraction operation. It is assumed that damage is irrevers-

ible and that no healing takes place in the material, i.e., k=0. For
elastic-damaging processes, the total strain is obtained by the fol-
lowing constitutive relation as:

e(o,k)=C(k):or (2)

in which C represents the fourth-order compliance tensor for the
material. The dependence of C on k reflects the idea that damage
alters elastic properties and allows for the description of load-
induced anisotropy [13,14]. As was the case in the original dam-
age model by Ortiz [1], it is assumed that no permanent deforma-
tion will arise due to the misfit of crack faces. The inclusion of the
inelastic damage strain tensor will not alter the results of this
paper although appropriate relations including a corresponding
evolutionary relation for the inelastic strain tensor must be added.
The Clausius—Duhem inequality establishes two results. The first
one is the dissipation inequality,d, given as
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and, the second one is the statement that GFE is a potential for the
strain tensor as:

3)

e(o,k)=

WOR _ (y:o @)
Jdo

To progress further, assume that the rate of the added flexibility

tensor is expressed as a linear form in k as C¢(k)=k R in which R
is a fourth-order damage response tensor. Integrating Eq. (4) with
respect to o and substituting back in Eq. (3) yields:

1 IA'(k)
d,=|-oR:io—- k=0
2 ok

in which A’(k) arises as a constant of integration representing the
inelastic component of the Helmholtz free energy associated with
surface free energy of cracks. Since it is assumed that damage is
irreversible, it then follows that the term inside the parentheses in
Eq.(4a) must itself be non-negative. One could then formulate a
potential, ¥ (o, k) such that:

(4a)

i

a.
Y(ok)=—0R:io-— —g*o,k)=0 4b
(a.k) 5 %8 (a,k) (4b)
for some function “g.” The individual identification of functions

Al or g is not needed as long as the function #*(o,k)
=2{(dA!/ 9k)+g*(o,k)}, known as the damage function, could be
determined. With the damage function given as t, a general form
of the damage surface is established as:

V(o,k)= %O'ZRZO'— 2%tz(a',k) =0. (5)

Anisotropy

To bring in the anisotropy for tensile stress path, Ortiz [1] pro-
posed the following damage response tensor for damage mode I:

e ot

R= (6)

oot
in which o represents the positive cone of the stress tensor. The
operational requirements to obtain o* are formally stated in ref-
erences cited above and will not be repeated here. The substitution
of Eq. (6) into Eq. (5) yields the following result in the uniaxial
tensile stress path that:

(01)*=r(0k) (M

where o represents the component of the stress in the 1-1 direc-
tion. Equation (7) is usually used to obtain a form for the damage
function from the uniaxial stress—strain path as was done by Ortiz.
Following the experimental work of Smith and Young [15], the
following logarithmic form for the damage function was used:

o) = fe In(1 + Ek) ®)
(1 + Egk)

where f; denotes the uniaxial tensile strength of the material, E is
the initial value of Young’s modulus, and e is 2.71828. The graph
of this function is shown in Fig. 1. Using the rate form of Eq. (2)
together with Egs. (5) and (6), and integrating over the path, the
closed form of the stress-strain relation for the uniaxial tensile
stress path can be shown to be

1 1
e=|—+k|oyk)=| —+k|tlk 9
(Eo )1()<E0 )() ©)
From the structure of Eq. (9) one can see that the initial slope of
the curve is given by E,. Furthermore, the right-hand side of Eq.

(9) is the product of two functions. One function, ((1/Eg)+k),
monotonically increases with k; the other function, 7(k), first in-
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Fig. 1 Normalized damage function #(k)/f, vs normalized k/k’

for logarithmic and bilinear damage functions

creases (hardening regime) and then decreases (softening regime)
with k. Therefore, if care is not taken in the appropriate specifi-
cation of #(k), the strain function could be an increasing and then
decreasing function of k representing therefore a behavior that is
termed here as the apparent snapback.

For example, in many cases engineers approximate nonlinear
functions, such as the one represented by Eq. (8), and replace
them with bilinear functions as shown in Fig. 1. It was shown by
Yazdani et al. [12] that in the strain-softening regime, bilinear
damage functions exhibit apparent snapback, that is, multivalued
behavior, no matter how steep or mild the slope of the damage
function in the post-peak regime is. This behavior is shown in Fig.
2 for several bilinear damage functions along with the response
obtained by using Eq. (8). In the latter, as strain increases with
increasing damage, stress increases to a maximum, f;, and then
decreases. It can also be shown that damage functions with three
straight-line segments or in quadratic or sinusoidal forms will also
lead to the snapback. It is therefore clear that a criterion is needed
to aid in the selection of appropriate damage functions that will
produce well behaved, stress—strain response with no snapback.

In the following section, we present a formal method with theo-
rems and proofs in developing a family of damage functions that
produces well behaved stress—strain curves with no snapbacks.
The work here is considered an extension to the work reported by
Yazdani et al. [12] in that (a) it presents a formal method with
theorems and proofs to the general approach, and (b) it removes
the shortcoming of the previous work by including the new capa-
bility of matching the theoretical curve with the observed initial
slope and observed points of maximum uniaxial strength for all
families of curves introduced in the analysis.
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S
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Fig. 2 Stress—strain curves for logarithmic and bilinear dam-
age functions for =0.08, 0.10 (Ey¢,/fi=¢€)
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Model Functions and Properties

In developing a solution strategy for selecting appropriate dam-
age functions, it proves convenient to introduce a set of functions
called “model functions” with the following properties. A model
function, m(x), is a function such that:

(a) m(x) is C[0,+) and is strictly increasing with m(0)=0
and m(+0) =+,

(b) m'(x) is C(0,+%) with xm’(x)/m(x) strictly decreasing
and such that

. [xm'(x)
1 <lim < 4+ asx— 0" and
m(x)

1im<xm,(x))=0 as x — + oo (10)

m(x)

Note that the strictly decreasing condition on the quotient implies
that m' (x)>0.

LEMMA 1. For each a>0, the function m(x)/(a)+x is initially
strictly increasing, then strictly decreasing on [0, +%). The maxi-
mum occurs at x=x, given by

mx,)

m'(x,) = (11)

a+x,
The proof of the lemma is given in the Appendix. Also, a second
lemma is given in the appendix that will be useful in generating
families of damage functions.

Having defined m(x) as a model function, one can then show
that there exist positive constants ¢; and ¢, such that a strictly
positive function (k) can be developed in the form of e(k)
=com(c k). The constants ¢; and ¢, are determined from a set of
experimentally identifiable points, namely the initial modulus of
elasticity, E, the tensile strength, f;, and the associated strain g,,.
This is shown below.

THEOREM 1. Let m(x) be a model function. Then, for each triple
of positive values Ey, e, f, with f,<Eye,, constants c; and ¢, can
be found such that with:

e(k) = com(c k) (12)
the constitutive relation
k ' C 1k
(k) = (k) _ cicomleik) (13)
1 Cq
—+k —+ck
Ey Ey

will display no snapback in the o—e space and will have a unique
maximum at the point (e,0)=(g,,f,).

Proof. We assume that there is a unique positive constant k*
associated with the uniaxial tensile strength, f;, and is determined
experimentally by k"=(ge,/f)—1/E,. To show that e(k) is a
strictly increasing function, we recall the property (a) of the model
functions defined previously. Since m(x) is a model function and
constants ¢; and ¢, are positive, then g(k) is a strictly increasing
function of k and therefore snapback cannot occur. Now we need
to show that Eq. (13) is initially strictly increasing, then strictly
decreasing with maximum occurring at k* corresponding to o
=f, and e=g,. We first note that from Lemma 1, the stress func-
tion by Eq. (13) is initially strictly increasing, then strictly de-
creasing. To show the last part corresponding to the maximum, let
" be a dimensionless parameter given by r*=Eyk". By solving the
equation

x'm' (x") r

m(x") " 1+r (14)

we obtain a positive root x* by the definition of model function
and that x" satisfies the equation

Journal of Applied Mechanics

o

"
.
o

xw'{x} 0.8 Y
u {x}
[ r* S {1+r*})

F

g. 3 Schematic representation of Eq. (14)

m'(x") 1

m(x*) " a+x"

(15)

with a=x"/r" and x"=x, signifying the location of unique maxi-
mum for m(x)/(a)+x. The schematic representation of the solu-
tion to Eq. (14) is provided in Fig. 3. Then, it follows that with
specifying ¢,=Eqa and c,=¢,/m(x"), the maximum of the func-
tion occurs at k=k" with the maximum of the function being equal
to f. QED

Generating Model Functions

To construct model functions, consider a function g(s) that (a)
is C(=o0, +20), (b) is strictly decreasing, (c) satisfies the limits 1
<lim g(s) < + for s— -0 and lim g(s)=0 for s— +, and (d)
satisfies the integral condition

f g(s)ds= +oo.
0

The model function m(x) is then formulated and obtained as

In(x)
m(x) = exp(J g(u)du)
0

THEOREM 2. The function obtained from Eq. (17) is a model
function.
Proof. With the change of variable s=In(u), we get

s=In(x) X
m(x) = exp(f g(s)ds) = exp(f Mdu) (18)
5=0 1 u

It is immediate from condition (a) above on g(s) that m(x) defined
by Eq. (16) is C(0,%0) and that m’(x) is also C(0,). By condi-
tions (b) and (c) listed above, lim m(x)=0 as x— 0% and m(x) will
be strictly increasing. By condition (d), n(+e)=+% and part (a)
of the definition of model function is therefore satisfied. By dif-
ferentiating Eq. (16) one obtains

(16)

(17)

xm'(x)
m(x)

so that conditions (b) and (c) on g(s) translate directly into part (b)
of the definition for a model function. QED

Example 1. Consider the function m(x)=In(1+x). This function
satisfies the definition of a model function as can be checked by
direct computation. In particular, xm’(x)/m(x) is strictly decreas-
ing on [0, +%) and has the limits of one and zero as x approaches
zero and +%, respectively. As noted in the proof of Theorem 1, the
following equation:

=g(In(x)) (19)
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Fig. 4 Normalized stress—strain curves in uniaxial tension
from Example 1. Initial slopes Ey=Eye,/f;=1.1, 1.25, 1.5, 2.0,
2.718 (Ortiz), and 4.0.

s

xm’(x)_ X T
mx)  (1+x)n(1+x) 1+7

(20)

has a unique positive root at x=x". By letting r"=Ek", c,=E,
=(x"/r"), and ¢,=¢,/In(1+x"), we obtain

e(k) = —— In(1 +x'k/k") 1)
In(1+x")
and the corresponding expression for stress as
(k) = —— L+ (22)
=————————In(1+
T (1 +x) (k + UE,) *

The stress—strain response is plotted in Fig. 4 for different values
of stiffness with curves showing no snapback behavior. For one
particular value of stiffness, Ortiz’s model is obtained.

Example 2. Lemma 2 in the Appendix provides some simple
ways of generating new model functions from any known model
function. For example, starting with the model function In(1+x)
of Example 1, it is immediate from Lemma 2 that

(a) In(1+x?), p=1
() (In(1+x))7, g=1
(c) (In(1+x"))? p,g=1
(d) In(1+In(1+x))

are all model functions, and each individual instance can be used
as m(x) for creating a damage function. For example, for case (a)
consider the function m(x)=In(1+x”) with p= 1. For a set of ex-
perimentally obtained values f,, €, and Ej, and following the
steps stated in the proof of Theorem 1, we calculate dimensionless
quantity 7" =(Eye,/f,—1) and constants ¢, and c,. The plot of this
family of stress—strain curves is shown in Fig. 5 for different
values of p and normalized initial slope Eye,/f,=e. All curves are
well behaved showing no snapback characteristics. As p increases,
the curves start to merge, so that the curves are essentially iden-
tical for large p. This is characteristic of this particular model
function and may not be seen if other model functions are used.
Similarly, Fig. 6 shows stress—strain curves based on the model
function m(x)=(In(1+x))? for different values of ¢g. No snapback
in the solution occurs. Other model functions could be developed
from Eq. (17) resulting in well behaved stress—strain responses
following the steps outlined in this paper.
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Conclusion

It was shown that if care was not taken, internal contradiction
within a class of continuum damage mechanics models could arise
where a snapback in the stress—strain curve is observed. To avoid
this problem, a formal method of specifying a family of damage
functions was presented with associated theorem and proofs. It
was shown that by establishing a set of functions identified as
“model functions” possessing certain characteristics the formula-
tion could lead to the construction of a well behaved response in
the stress—strain space. A set of experimentally identifiable param-
eters is used to correlate model prediction to experimental data.
The approach was illustrated with two examples for a general
class of elastic-perfectly damaging behavior.

Appendix

Proof of Lemma 1. The derivative can be written as a product
of two terms:

1.5 2 2.5 3
ele_

Fig. 6 Normalized stress-strain curves in uniaxial tension

from Example 2. Model function (In(1+x))9 with g=1 (Ortiz), 2,
4, 8.
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xm'(x) B l) (A1)

d (m(x)) m(x) <am'(x)
dc\a+x) (a+x2\ m®) * m(x)
On (0, +), the first term in the parentheseis is strictly positive.
The second term is a sum of two strictly decreasing functions and
is therefore strictly decreasing. The first function is
{am'(x)/m(x)}, which decreases from +% to zero. The second
function is {xm’(x)/m(x)—1}, which decreases to the negative
value —1. The sum therefore strictly decreases from +2 to a nega-
tive value, changing sign exactly once and implying that the origi-
nal function is first strictly increasing, then strictly decreas-
ing. QED
LEMMA 2. Let functions m(x) and m(x) be model functions.
Then:

(1) n(x)=bm(ax) is a model function for all a,b>0.
(2) n(x)=m(x®) is a model function for each a=1
(3) n(x)=(m(x))* is a model function for each a=1.
(4) n(x)=m,(m(x)) is a model function.

Proof of Lemma 2. The main step in each case is to check that
xn'(x)/n(x) is strictly decreasing. Here is the main step shown for
(4). The quotient can be written as a product of two terms:

xn'(x)  xm'(x)mi(m(x))  xm’(x) m(x)m(m(x))
m;(m(x)) m; (m(x))
By the definition of model functions, both terms are positive func-
tions and because, m(x) is strictly increasing, both terms are
strictly decreasing functions. The product is therefore strictly de-

n(x) m(x)

Journal of Applied Mechanics

creasing. The product satisfies the two limit conditions because
each term does so. QED
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Transmission of Elastic Stress
Through Circular and Elliptic
Cross Sections of Microstructural
Elements Embhedded in a Matrix
Material

With the use of contact stress theory and complex variable methods in two dimensions,
the transmission of a compressive stress through a circular cross section of a small
material particle is calculated in the infinite plane of material below the circular cross
section. The circular cross section of the particle is embedded in and completely bonded
to an infinite plane of matrix material. It is shown that part of the stress is transmitted
with a dependence of 1/r, where r is a radial coordinate. Additionally, the stress is
calculated in two dimensions for the interior of an ellipse that could model a cross
section of a grain or particle. The boundary of the ellipse is loaded with the stress
holding an elliptic kernel in place in an elastic matrix material after the kernel has
undergone a small rotation under an applied tensile load. The resulting stresses are
shown in contour plots for elliptic cross sections of varying shapes and
orientations. [DOI: 10.1115/1.1935525]

1 Introduction

The stress distribution around particles and grains is important
in the design of materials because such distributions can indicate
areas of increased toughening or areas for fracture. For increased
resistance to fracture, for example, small particles are often dis-
persed into the grain boundaries and into the interior of grains
[1-4]. Tt is therefore the goal of this work to record what happens
when a particle interacts with an applied stress coming from an-
other part of the matrix material.

Other analytical solutions for stress distributions have involved
entities that are circular [5-10], spheroidal [11], elliptic [12-15],
and ellipsoidal [16-20], or are small inclusions [21-25]. Comple-
menting these works, the study here considers a small circular
cross section of a particle that is embedded in and completely
bonded to an infinite plane of matrix material. The circular cross
section is loaded in compression on the upper half of its circum-
ference, as shown in Fig. 1. The stress transmitted to the lower
half of the circumference is then used as a boundary condition to
calculate the stress transmitted into the infinite plane of material
below the particle.

This paper also calculates the stress distribution in the interior
of an ellipse representing a grain or inclusion that resides in an
elastic material matrix. The major axis of the ellipse is at an angle
to an applied tensile load, allowing the ellipse to undergo a slight
rotation denoted by the angle & [26], as shown in Fig. 2.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the Applied Mechanics Division, May 27, 2004; final revi-
sion October 30, 2004. Associate Editor: H. Gao. Discussion on the paper should be
addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechanics,
Department of Mechanical and Environmental Engineering, University of California-
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four
months after final publication in the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.

558 / Vol. 72, JULY 2005

Copyright © 2005 by ASME

2 Transmission of a Compressive Stress Through a
Circular Cross Section

A compressive stress —P, which is the applied load in the y
direction per unit length in the x direction, is being transmitted
through the matrix material toward the upper half of a circular
cross section, as shown in Fig. 1. Stresses resulting from the ma-
trix material, which is being held in equilibrium with the particle,
are assumed to be small in comparison with the compressive
stress applied to the upper half of the surface of the particle.

The angles 7, and 7,, also shown in Fig. 1, are measured from
the line of the load to the line connecting point A to the edge of
the applied load. 7, and 7, are positive when measured counter-
clockwise and are negative when measured clockwise. Stress
states o and 7 will denote a loads per unit length in which the first
subscript denotes the direction of the vector perpendicular to the
plane upon which the load acts. The second subscript denotes the
direction of the load itself.

For the Cartesian coordinates x and y shown in Fig. 1, the final
stress state of a point below the surface can be found by integrat-
ing over the upper half of the circle, which can represent a cross
section of unit thickness of a small particle [27]. The final result is

0= (= PI2m)|2(7, = m) = (sin 27, = sin 277,
0y, = (= P12m)|2(7, = 1) + (sin 27, — sin 277,)] (1)

Ty = (P[277)(cos 277, — cos 277,)

6 is an angular coordinate beginning at zero at the x axis and is
measured counterclockwise. The angle y was then defined as a
polar angle beginning at the left-hand side of the circle in Fig. 1
and is equal to 6-7. From Fig. 1, it was then calculated that 7,
—m=m/2, sin2np—-sin2xy=2siny and cos2n;—cos2n,
=-cos . With these substitutions, along with y being equal to
-7, the stresses in Eq. (1) may be written

P P
(rxxz—g—;sinﬁ
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Cross
Section of a
. Small

Matrix Material

Fig. 1 Diagram showing the Cartesian, cylindrical, and angu-
lar coordinates for the circular cross section

P P
a'yy=—5+7—_rsm 0 (2)
P
TX},=;TCOSQ

The stresses in the infinite plane below the circular cross sec-
tion may be obtained from two stress functions ® and W of the
complex variable z [26]. The complex variable z is x+iy, where x
and y have the orientation shown in Fig. 1. The variable z may
also be written in polar coordinates as re', where r is a radial
coordinate. The radial coordinate r has a value of zero at the
center of the circular cross section and a value of R at the perim-
eter of the circle.

The stresses o, 0,,, and 7, are related to the two functions
®(z) and V(z) by the equations [26]

T Applied
Stress

N

</

l Applied
Stress

Fig. 2 Diagram showing the slight rotation through an angle ¢
of an elliptically shaped cross section embedded in an elastic
material matrix and under a remote applied tensile stress

Journal of Applied Mechanics

O+ 0y, =4 Re[D(2)] (3)
and

Oy = O + 207, =2[2®" (2) + V(2)] (4)

In Eq. (3), the symbol Re denotes the real part of the function
®(z). In Egs. (3) and (4) and in what follows in this paper, the
prime next to a function denotes the derivative of that function
with respect to the variable in parentheses. A bar over a variable
or function denotes the complex conjugate of that variable or
function.

A combination of Egs. (2) and (3) gives oy +0,,==P
=4 Re[P(z)]. Consequently Re[D(z)] is equal to —P/4. Since Eq.
(2) shows that o, 0y,, and 7, are simple functions of the sine
and cosine of f at r equal to R, as a trial, ®(z) was set at —P/4 and
W(z) was made a function of . Then ®’(z) became zero and Eq.
(4) became

2P sin 6+ P cos =2V (z)
T T

at r=R (5)

Use of the complex form of the sine function, (e!?—e~%)/2i, and
of the cosine function, (e!%+¢7%)/2, gives

V(z) = € + Tt 0 atr=R (6)

Since z=re'? and the complex conjugate of z is re™'% W(z) may be
written as

—iPR 3iPR

477 4wz

Equations (3) and (4) can be combined to give

W(z) = atr=r (7)

0y + Ty, =2 Re[D(2) ]|+ 20/ (2) + ¥ (2) (8)
Combining ®(z) equal to —P/4 with Egs. (3), (7), and (8) gives

—P PRsin6

Opy=—"+—"7

’ 2 mr
—P PRsin@
Op=—""—-—"— atr=r 9)
’ 2 r

As a check on the previously constructed functions ®(z) and
W(z), it can be seen that at r equal to R, Eq. (9) is in agreement
with Eq. (2). The stress o, from Eq. (9) is shown in Fig. 3.

3 Stress in the Interior of an Ellipse Representing a
Grain Under an Applied Tensile Load

The method introduced will again use the two functions ® and
W of the complex variable z [26]. The method also uses the con-
formal mapping z=w({), which maps points in the z plane onto
circles in the ¢ plane and points in the ¢ plane back onto the z
plane. { is a complex variable in polar coordinates in the image
plane equal to pe'’. An ellipse in the z plane can also be expressed
in terms of elliptical coordinates p and 6. For the elliptical coor-
dinates p and 6, the unit vector p is in a direction perpendicular to
the perimeter of the ellipse. The unit vector fis orthogonal to p in
an angular direction measured counterclockwise from p.

With the two functions ® and W and the mapping z=w({) just
discussed, the final stresses in the real plane in a polar coordinate
system p, 6 are [26]

2

0, 0,9 =B(0) + D) - ﬁ{@@'@ 0 (VD)

(10)

In Eq. (10), the functions ®({) and W({) are related to two other
stress functions ¢ and ¢ and the mapping function w({) by [26]
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Compressive Stress in y Direction
Distance (in units of the radius R)

-0.55 +

-0.80

-0.85 A

-0.70 4

-0.75 +

-0.80 4

Stress (in units of applied stress P)

-0.85 +

-0.80 -+

-0.85 -+

-1.00 +

-#- Angle theta 270 deg —— Angle theta 315 deg

Fig. 3 Compressive stress o, below the circular cross section as a func-
tion of distance from the center of the cross section

20-538 (1
o= 28 (1)

The two functions ¢ and i are already known for the region
exterior to the ellipse [26]. In this study, the two stress functions
¢y and ¢ for the interior of the ellipse were found. The elastic
stresses for both the interior and exterior of the ellipse were then
calculated and plotted.

The two stress functions ¢ and ¢ are in general related to a
function f;+if, by the equation [26]

o(L) + %w'@.) + WD) =fi +ifs
NS

In Eq. (13), £, is the value of { along the boundary of the geo-

(13)
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metric entity in the image plane from a conformal mapping. The
function f|+if,, referred to in this paper as the function f, is
related to the net stresses acting on the boundary of the geometric
entity in the real plane.

The interior and exterior of the ellipse use a different scale in
curvilinear coordinates. What remains the same for the regions
both inside and outside ellipse, however, is the scale based upon
the complex variable z. With the mapping z=w({) for the region
exterior to the ellipse, the function f, calculated for the exterior of
the ellipse from Eq. (13), was expressed in terms of the complex
variable z. The function z=w({), specific to the elliptic rings mod-
eling the interior of the ellipse, was then used to express the
function f in terms of the curvilinear coordinates for the ellipse
interior.

The process of finding ¢, and ¢, for the interior of the ellipse
then involved taking the complex conjugate of Eq. (13) for the
ellipse interior and finding a series in complex form for the func-
tion f:
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Fig. 4 Stress o, in the direction perpendicular to the perim-
eter of the ellipse. The remote applied tensile stress is aligned
with the vertical direction pointing to the top and bottom of the
figure. The major axis of the ellipse makes an angle of 45 deg
with the applied load. The ratio of the length of the major axis
of the ellipse to the length of the minor axis of the ellipse is 5 to
2.

fi=ifs= 2 e (14)
After expressing several functions in the form of Laurent series
[28,29], a series solution [26] was used to find the two functions
¢y and ¢. It was found that ¢, and ¢ have dominant terms
consisting of ¢ in powers of 1 and —1.

To overcome the differences in form between ¢, ¢, ¢, and i,
and to retain the correct angular distribution of stresses in the
region exterior to the ellipse, ¢ and ¢ were left alone and ¢, and
iy were multiplied by the constants « and S:

<po=aa1§+% (15)

Fig. 5 Shear stress o, in the direction parallel to the perim-
eter of the ellipse. The orientation of the applied load, as well as
the size and orientation of the ellipse, are the same as in Fig. 4.

Journal of Applied Mechanics

Fig. 6 The stress o, is plotted for an elliptical cross section
that is nearly circular. In contrast with o, shown in Fig. 3 when
a circular cross section transmits a compressive stress, shown
above is an almost circular cross section that rotates slightly
under a tensile load that is aligned with the vertical direction
pointing to the top and bottom of the figure. The major axis of
the ellipse is at an angle of 45 deg from the remote applied
tensile load. The ratio of the length of the major axis of the
ellipse to the length of the minor axis of the ellipse is 15 to 14.

g,
4

The boundary conditions used to evaluate @ and B in Egs. (15)
and (16) are

o= Bail+ (16)

Opp= ng (17)
Op= 0'20 (18)

In Eqgs. (17) and (18) o, refers to the stress for the ellipse interior
at the outer perimeter of the ellipse and o without the superscript
refers to the stress for the exterior of the ellipse.

To retain the correct angular distribution of the stresses outside
the ellipse, the parameters a and 8 were made functions of 6 at
each value of 6 along the perimeter of the ellipse when satisfying
Egs. (17) and (18). Since the stresses outside the ellipse are single
valued and continuous at the boundary, each a(6), B(6) set is
single valued and continuous, as well as the resulting stresses
inside that are derived from ¢, and .

The results of calculating the stresses outside and inside ellipses
of various shapes are shown in Figs. 4-7. Figure 8 shows the scale
of shading used for the contours in Figs. 4-7.

4 Discussion

The result that the functions ¢, and ¢ for the interior of an
ellipse primarily consist of terms containing ¢ and ¢! appears to
be a general case for regions of a shape that allow conformal
mapping onto a circular ring. For k greater than or equal to 2, the
coefficients a; in Eq. (15) are given by [26]

Moo= e (o' = PG
k= - _

(05— po)* = (03 = po™)?
The coefficients ¢; in Eq. (19) above are related to the coefficients
C, in Eq. (14) by [26]

(19)

(20)

In Egs. (19) and (20) above, py is the radius of the outer circle of
a pair of circles in the image plane. The pair of circles, or a
circular ring, is the entity upon which a pair of elliptic rings is

= Coiph— Cipy'
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Fig. 7 Stress o, plotted for bundles of ellipses adjacent to
each other. The stress due to the rotation of a particular ellipse
is plotted up to a line midway between it and the next nearest
ellipse. The remote applied tensile stress is aligned with the
vertical direction pointing to the top and bottom of the figure.
The major axis of the ellipses in the lower bundle make and
angle of 89 deg with respect to the applied load. The major
axes of the ellipses in the upper bundle make and angle of
60 deg with respect to the applied load. The ratio of the length
of the major axis of each ellipse to the length of its minor axis
is10to 1.

mapped. The elliptic rings themselves model the interior the el-
lipse for a series solution for elastic stresses [26]. It is readily seen
from Eq. (19) that for k greater than or equal to 2, a; becomes
rapidly small, in agreement with Eq. (15) derived from the bound-
ary function f.

Close inspection of the derivation of Eq. (19) [26] shows that
the factor p(z)k appearing in the denominator of Eq. (19) is inde-
pendent of the mathematical form of the mapping function z
=w({) that appears in Eq. (13). The factor p(z)k eventually appears

net stress calculated
comparison stress = applied stress

-ns £ (-2 x &©s5)

(-2 x cs) {= ns { —cs

—es {=ns { (-0.75 x cs)

(-0.75 x es) <= ns { (-0.50 x cs)
(-0.50 x es) <= ns { (-0.29 x cs)
(-0.25 x es) {=ns { O

0 <= ns { (0.25 x cs)

(0.25 x es5) <= ns < (0.50 x cs)
(0.90 x es) <= ns { (0.75 x cs)
(0.75 x es5) {<=ns { cs

es {=ns { (1.9 x cs)

(1.5 x es5) {= ns

Fig. 8 Shading scale used for the stress contours in Figs. 4-7
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in the derivation from being able to express the stress functions in
Eq. (13) in both positive and negative powers of ¢ when a map-
ping is done onto a circular ring.

The coefficients a; for the series form of i in Eq. (16) will
likewise become very small as k becomes greater than or equal to
2. In the derivation of the coefficients a; [26], it is shown that they
can be related to the coefficients a; themselves, which from Eq.
(19) can be seen to become small for k greater than 1. The coef-
ficients a; are also related to the coefficients C; in Eq. (14) mul-
tiplied by a factor of pak, which again will make the coefficients
a;, small for k greater than 1.

5 Conclusions

(I) Contact stress theory predicts that a constant compressive
stress —P will have about 80% of its initial value at the
bottom of the lower part of the perimeter of a circular cross
section when the stress is transmitted though the circular
cross section.

(2) Complex variable methods predict that the compressive
stress —P applied to the upper side of a circular cross sec-
tion will transmit into the infinite plane from the lower side
partly as —P/2. The stress also transmits as a term that
attenuates as 1/r and that has an angular dependence of
sin 6.

(3) When the scale of the curvilinear coordinates for the real
and image planes is different for two regions on opposite
sides of a boundary, the function f may be expressed in
terms of z using the first mapping function and then ex-
pressed in curvilinear coordinates for the second region us-
ing the second mapping function.

(4) For the interior of an ellipse being held in place after rotat-
ing under a remote applied tensile load, and in general for a
geometric entity that can be mapped onto a circular ring,
the dominant terms in the stress functions for the interior
have exponents of 1 and —1.

(5) Continuity of the stresses along the boundary makes it pos-
sible for the multiplicative constants & and 8 multiplying
the terms of ¢, and ¢ to be functions of the angular coor-
dinate moving around the perimeter. Allowing « and S to
be functions of the angular coordinate ensures continuity of
stresses across the boundary when the functions ¢, and ¥
on one side contain a disparate number of terms in com-
parison with the functions ¢ and ¢ on the other side.
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This paper provides the theoretical collapse loads of thick, long cylindrical shells subject
to pressure and axial forces. Tubes are made of isotropic, perfectly plastic von Mises’
material. Axial strains are assumed to be constant but possibly different from zero, so that

elongation is permitted. This assumption, together with axial symmetry and the isochoric
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nature of plastic flow, unambiguously defines the set of possible collapse mechanisms,
and collapse loads are computed on this basis. Results are contrasted to those presently
available, based on thin-shell assumptions. Comparison shows that differences are of
engineering significance, well worth considering for thick tubes, such as those envisaged

in some nuclear power plant applications. [DOI: 10.1115/1.1938204]

1 Introduction

The assessment of load-bearing capacity of shells can be con-
sidered an issue satisfactorily settled when shells are thin enough
to collapse because of elastic buckling, as typical of aeronautic or
aerospace applications. Outside this context, however, shells of
higher thickness often are required. Medium-thick shells are em-
ployed, for instance, in the oil industry as pipes or casings (with
thickness increasing as the depth of the water in which the pipes
operate), and recent proposals for innovative nuclear power plant
design consider steam generator tubes of significant thickness
pressurized from outside [1].

When thick tubes are subject to external pressure, collapse is
initiated (and often dominated) by yielding, but interaction with
instability is meaningful, in that imperfections reduce the load
bearing capacity by an amount of engineering significance also
when thickness is considerable. At present, such an effect is ac-
counted for by means of more or less empirical formulas, defining
the reduction with respect to the plastic collapse load induced by
coupling with instability [2-8].

Independent of the adequacy of such formulas, often borrowed
from problems, such as beam columns, only partially similar to
thick tubes, the very definition of the reference value demands
discussion. In general, the plastic collapse pressure is computed
by exploiting thin-shell assumptions, which consider stresses con-
stant throughout. Under uniform pressure the tube becomes stati-
cally determinate, with the consequence that the elastic limit is
overestimated and the collapse pressure underestimated. Discrep-
ancies are negligible as long as the ratio between the radius of the
cylinder and its wall thickness is large, but get more and more
significant as this ratio decreases.

The pressure values at the onset of yielding (elastic limit) are
easily computed from the well-known elastic solutions [9], and
the correct thick shell values are used by most codes (see, e.g.,
[10]). The analogous results for plastic collapse, on the contrary,
are available only for tubes in plane strain [11,12], a situation of
interest but by no means the only significance.

To clarify this point, the kinematics of deformation of long
cylinders is examined. The tube being subject to uniform pres-
sures (for completeness, internal pressure is also included) and,
possibly, to constant axial force, each cross section undergoes the
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same loading, and its response is essentially “plane,” in that
stresses and strains are independent of the axial coordinate, say z.
Classical plane solutions, however, are not adequate. A slice of the
cylinder in plane stress conditions would experience (in the
elastic-plastic range) nonuniform transverse strains ¢, in general,
conflicting with those of adjacent slices. A plane-strain assump-
tion solves the conflict by imposing that &, be zero throughout, but
this constraint appears excessively severe; in fact, continuity be-
tween adjacent slices is merely expected to make axial strains
uniform without preventing possible elongation. For long tubes
the most realistic model seems that of generalized plane strain,
which assumes that ¢, is constant, but not necessarily zero.

In this paper long, thick cylinders subject to (external and/or
internal) pressure and axial load are considered and the values of
such loads bringing, individually or together, the cylinder to col-
lapse are determined. To this purpose the kinematic theorem of
limit analysis is employed in conjunction with the von Mises yield
criterion. In spite of the upper-bound nature of the kinematic theo-
rem, the result is exact; in fact, the assumptions of axial symme-
try, generalized plane strain, and isochoric plastic flow unambigu-
ously define the set of possible collapse mechanisms, governed by
the ratio among two parameters, namely, the radius variation and
axial elongation.

Results are contrasted to the corresponding elastic limits and to
predictions stemming from thin-shell assumptions. Comparison
permits the assessment of some points, such as the resources with
respect to the elastic limit provided by stress redistribution and the
range of validity of thin-shell approximation. In particular, it ap-
pears that the latter assumption is too restrictive for really thick
tubes, as those required by some fourth-generation nuclear plant
applications.

Limit analysis is based inherently on the small strain hypothesis
and results are unable to assess the influence of the plasticity-
instability interaction on the collapse level—influence which is
significant in medium-thick cylinders and plays some role even in
the definitely thick cylinders. This aspect is presently investigated
and some preliminary results are presented in [13]. As was already
mentioned, however, formulas evaluating such effects use the col-
lapse load as a reference value and its correct definition seems to
be a preliminary, but important, starting point toward a rational
assessment of the load-bearing capacity of this structural typol-

ogy.

2 General Relations

The cylinder in Fig. 1 is considered. Loads consist of external
pressure ¢, internal pressure p, and axial force F, all constant
throughout. Pressures are supposed to be always positive, while F
can assume either sign, with >0 corresponding to tension. The
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Fig. 1 Geometry and load conditions

material is elastically isotropic and perfectly plastic, with a yield
limit governed by the von Mises criterion. The cylinder is in a
generalized plane-strain situation.

2.1 Elastic Solution and Elastic Limit. The elastic solution
is constructed by considering that a slice of the cylinder in plane
stress conditions would undergo uniform displacements in the
axial direction [9]; hence, when a number of slices piles up to
build a long cylinder, no conflict among them arises and the plane
stress solution maintains its validity. On this basis, one can write

RIS PRI S
=G T T TP 2 2 (1a)
v rP+ad a*> b+t

To=" a2 2 +pb2—a2 2 (1)
o,=n (1c)

where (1a) and (1b) are the plane stress components and

F

=———5" 2
" - ) @

is the axial force per unit cross section, defining the axial stress
due to F.

Since shearing stresses vanish throughout, the von Mises yield
criterion reads

1
o.=35\0,—0g) +(0y—0)+(0.-0) <0y (3

o, being the effective stress and oy, the tensile yield strength. The
elastic limit is attained when Egs. (1a)—(1¢) fulfill condition (3) as
an equality for some r in the interval a<r<»b.

2.2 Plastic Collapse. The kinematic theorem of limit analysis
[14] states that the ultimate load can be computed by equating the
work of external loads to the work plastically dissipated in the
motion corresponding to the collapse mechanism (strictly speak-
ing, the equality involves powers rather than works, the mecha-
nism motion being defined in terms of velocities, but the termi-
nology used often is preferred). For arbitrary mechanisms the
procedure only provides upper bounds; however, the exact value
is obtained when the actual collapse mechanism is employed. In
the present case, this can be defined unambiguously because of
the conditions of polar symmetry, generalized plane strain, and
isochoric plastic flow, the latter imposed by the normality rule
when the von Mises criterion is used. These conditions imply
Polar symmetry:

(4a)

sz

v,=v(r) vy=0, &=

B
A

1l
N <

Generalized plane strain:
é.=C (const) (4b)

Isochoric plastic flow:
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(4c)
Equations (4a)—(4¢) produce the following differential equation:

£, +€y+6,=0

which defines the radial velocity field

b2_r2

b 1
v(r)=—V—+ EC( ) (positive outward) (5)
r

and the consequent strain rates

b 1 b?
a,—V2—5C1+ﬁ (6a)
Vﬁ lC(l b—z) (6b)
gy= 27 2
§.=C (6¢)

The integration constant V is chosen so as to represent the outer
radius velocity, positive if directed inward [V=-v(b)]. The veloc-
ity U of the inner radius (positive outward) is

b 1 (b -a*
U=v(a)=-V-+=C

a 2 a
Equations (5) and (6a)—(6¢) govern the motion of the only mecha-
nisms consistent with the assumptions, which are governed by the
two parameters V and C. For von Mises’ materials the dissipation
(per unit volume), when expressed as an explicit function of strain
rates, reads

2 2o,
2= \,/goov'af + 85+ 8

A_ 2 - . - - .
D= \?oo\e”(s,— E9)+ (89— 8,07+ (.- 8,)

where equality holds because of constraint (4c). Then, from Egs.
(6a)—(6¢) one obtains

D:% vzlj—j—vc[;—j+icz<3+lr’—:> (7)
The kinematic theorem of limit analysis establishes
=D (8)
where
1 =27bqV + 2mapU + FC = 2wb(q — p)V + w(b> = a®)(n + p)C
(9a)

is the external work and

P (P B 1 (b
D=2m | Drdr=—=0, Vi =VC— + ~C\ 3+ — |rdr
a V3 u r o4 I3

(90)

is the amount dissipated by the material. In writing Egs. (9a) and
(9b) the length H of the cylinder was assumed as unitary. The two
parameters V and C must be selected so that, for the load condi-
tion considered, the external work (9a) is positive.

The dissipation D is a positive homogeneous of degree one
function of V, C, and one can write

so that Eq. (8) becomes

(27Tb(q—p)— %>V+ (w(bz—aQ)(n +p) - %)c:o
(10)

This relation applies independently of the relative values of V and
C. Hence
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The mechanism amplitude being arbitrary, different mechanisms
merely correspond to different ratios C/V. Let this ratio be repre-
sented by a dimensionless parameter «, defined by the relation

Vv

C=k— (12)

then one can write

N b* 1 bt (b 1\ 31
V _VC_4+ZC 3+ =Vl 1l-2k| + 7Kk
r r r

b1 ¥\ v(3 »* 1
—V—4+—C 3+—4 ="\JK— 3 1-—-«k
7 2 r b\2 r 2

and Egs. (11a) and (115) become

q-rP= |V| f \/ 1 2r4 r

nrps |v| bf\/

(13b)
where the sign of V is dictated by the condition

M= %[sz(q —P) KB =aAn+p) V>0 (14)
For any assigned value of «, Eqs. (13a) and (13b) establish the
relations among ¢,p, and F at collapse. Closed-form expressions
for the integrals on their right-hand sides are available, but do not
provide significant advantages with respect to numerical integra-
tion, which is carried out easily by exploiting standard software,
such as MATLAB.

2.3 Thin-Shell Approximation. For comparative small ratios
t/b, t=b—a being the wall thickness, stresses are usually assumed
to be constant. This makes the cylinder statically determinate, and
global equilibrium establishes

b a

=—qg—+p-, 15
Ty==q P (15)

If tubes are actually thin, often the further assumption a=b=R,
=%(a+b) being the mean radius, is introduced when writing the
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Fig. 2 Hydrostatic pressure

first of Egs. (15). However, the distinction among internal and
external radii is of importance when the assumption is used for
moderately thick cylinders, as frequently done in the literature.

The cylinder being statically determinate, its elastic and col-
lapse limits coincide and are obtained from condition (3) imposed
as an equality for the stresses above.

3 No Internal Pressure

3.1 Elastic Limit. The meaning of the results in the preceding
sections is better understood if the special case p=0 is first con-
sidered. As for the elastic limit, observe that the von Mises effec-
tive stress is maximum at the inner radius, where one has

b2
b’ -

Then condition (3) reduces to a quadratic equation that is easily
solved to give

1b2—a( ; 3<n)2 1n>
o ) L
1= 02 p? 4\ oy 2 oy
Equation (16) expresses the pressure at the elastic limit as a func-

tion of the axial load. Particular cases worth mentioning are Pure
pressure: When n=0 the solution reads

0,=0, oy=-2¢q 7, 0,=n

Z

(16)

n=0, (17a)

Pure axial load: For g=0 one obtains the obvious result
q=0 n=n,=xo0y (17b)
Hydrostatic pressure: This condition implies (see Fig. 2)
»?
v -a?
As a consequence, at the elastic limit one has
2t 11t 1
@Uo;(l - 51_9)’ Npe=— V,—gao

In writing the results above, use was made of the geometric rela-

tion
1b*—a* ¢ 11
== 1——-
2 b b 2b
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3.2 Collapse. For p=0, Egs. (13a) and (13b) become

b 1-—-«k
2 2 dr (19)
= * =0 a
q 3 0 ) \/( 1 )2 3 2r4 r
1-—k] +—« v
2 4 b
3 (1 ! )
2 ’ 2Kb4 %) ar
n=x =0 - (19b)
V3 r

the sign being decided by condition (14).
For particular values of « the solution is easy. As it is immedi-
atly verified, k=2 implies

(20)

and corresponds to collapse under (tensile or compressive) axial
load alone. For the case k=0, which implies a plane strain situa-
tion (no elongation in the axial direction), one obtains

k=2:=>¢q=0 n=ng= =0,

2
k=0:=>qg=qy="==oylg—
3 Ca

2 b b b
\50'() 518 aqu

e =— 21
b*—a*“a b - @D

n=npy=-—

The first of these results is well known [11]. The second estab-

lishes that this situation corresponds to hydrostatic pressure (Fig.
2).

The case of pure external pressure is not equally straightfor-

ward. The relevant value «, of x is obtained by solving Eq. (19b),
written for n=0. Namely,

1
s __K)
2 b 2 dr

[l

=0=k,

—_K + - K_

When (19a) is evaluated for «,, results turn out to be approxi-
mated to an excellent accuracy by the equation

1053)
— - + -
q Uob b

A best fit over the interval 4 <b/¢<20 establishes k=0.247 and,
with a further slight approximation, one can write

! (1 ! t> 0 (22)
K=Ky =q=qy= o-ob +4b n
The expression above is plotted in Fig. 3 (solid line). Comparison
with numerical results (dots) shows that it is fully acceptable for
engineering purposes.

It is of interest to note that the same formula with k=0.235 was
arrived at empirically on the basis of numerical solutions for long
cylinders, with no a priori enforcement of the generalized plane
strain constraint [3]. The difference in coefficient k affects the
result by <0.4% already for b/t=4, and the error diminishes rap-
idly with increasing slenderness.

The solutions for other values of « are computed from Egs.
(19a) and (19b). In this way, interaction curves in the g-n plane
can be constructed. For some b/1 ratios they are depicted in Fig. 4.
Dots indicate where the solution predicts V=0, when the lateral
expansion caused by axial compression exactly compensates the
effect of external pressure and separate zones with different signs
in Egs. (19a) and (19b).
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Fig. 3 Limit external pressure

3.3 Thin-Cylinder Approximation. By introducing expres-
sions (15) written for p=0 in condition (3) and by enforcing it as
an equality, one obtains

t( 1 3(n)2 ln)
=0n— - — _——
1= 90, oy 20,

Eq. (23) is widely used to express the limit external pressure as
function of the axial load [3,8]. One has, in particular: Pure pres-
sure:

(23)

t
qgs = 0'01—’ n=0 (24a)

Axial load only:
(24b)

Hydrostatic pressure: The thin-cylinder approximation implies in
this case

— TS _
q=0 ny’= =0y

o, nt
oy qb 2
and from (23) one obtains
2t 1
i) )
qy = =0y~ - —=o0 (24c¢)
0= 0y MH B 0

4 General Loading

Fully analogous considerations apply when internal pressure
also acts, and results are presented and discussed, omitting com-
putational details.

The elastic limit is evaluated straightforwardly by enforcing
equality in Eq. (3) at the inner radius r=a, where yielding always
initiates. Only, it must be noted that values for internal pressure

0.3

0.2f -
QD
o
01| -

Fig. 4 External pressure versus axial load interaction curves
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Fig. 5 Collapse limit for different q, p,n combinations

might be slightly different from those usually found in the litera-
ture, mainly based on the Tresca criterion (e.g., [12]).

As for collapse, observe that Egs. (13a) and (13b) become iden-
tical to Egs. (19a) and (19b) when ¢ and n are replaced by g—p
and n+p, respectively. Hence, previous solutions maintain their
validity, as well as their graphical representations, which only
require changing the coordinate labels, but negative ordinates now
are meaningful. Figure 5 shows the resulting collapse limit for
b/t=5; the upper part of the curve is as in Fig. 4, and the lower
part is nothing but its reflection about both axes.

Any load condition corresponds to a point in the plane, even if
the same point is representative of different loading. When a point
(such as A) is internal to the domain, the corresponding load con-
ditions do not exceed the load-bearing capacity of the tube and the
margin with respect to collapse (safety factor) is given by the ratio
OB/OA. Pure external pressure conditions locate themselves on
the ordinate axis (point Q), while the opposite situation of pure
internal pressure corresponds to points like P, moving along a line
with a slope of —45 deg if the same scales were used for both
axes.

For a closed tube subject to both external and internal pres-
sures, one has

b a?
b -d* +pb2—a2
corresponding in Fig. 5 to points, such as H, moving along the
straight line

n=-q (25)

2_ 2
e (n+p)
Collapse always corresponds to k=0 (plane strain).

When defining the collapse mechanisms, the radial parameter
was identified with the velocity V at the outer radius. As a conse-
quence, the interaction curves obtained, such as that in Fig. 5,
essentially refer to ¢ and n, with the internal pressure p playing
the role of a “correction,” which diminishes the effect of the ex-
ternal one and contributes to axial tension (see Egs. (13a) and
(13b)). This makes cumbersome the evaluation of the safety factor
when p>gq, i.e., when the lower curves are to be used.

The choice of V instead of U as a free parameter is, in a sense,
arbitrary. It was made because the case ¢>p was considered of
greater interest, and the main purpose was to obtain interaction
curves, permitting an easy study of this situation. Nevertheless,
the opposite one is relevant enough to deserve some attention.

(g=p)=-
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Fig. 6 Internal pressure versus axial load interaction curves

For the sake of simplicity, discussion is limited to the case g
=0, which does not require that the procedure be restarted by
replacing Eq. (5) with a velocity field expressed in terms of its
inner radius value U. The collapse internal pressure p associated
to any given k can be obtained from Eq. (13a) and used to solve
(13D) for n. The resulting p—n interaction curves are depicted in
Fig. 6 (solid lines) and compared to the g—n curves from Fig. 4
(dashed), which can be considered as representative of a hypo-
thetical negative external pressure. As cylinders get thin, the two
curves approach each other, and for b/¢=20, they are nearly un-
distinguishable; for stocky tubes, however, differences are signifi-
cant enough to be considered.

Some comments on the results are in order. The first refers to
the ratio between the collapse and the elastic limits, measuring the
resources associated to stress redistribution in the plastic range.
Two thicknesses are considered, namely, b/t=5, typical of nuclear
power plant steam generators when pressurized from outside, and
b/t=10, representative of deep water pipeline or casing applica-
tions. The relevant limit curves for p=0 are redrawn in Figs. 7(a)
and 7(b), respectively, and supplemented by the corresponding
elastic limits. Obviously, the tube does not exhibit any plastic
resources when acted upon by axial load only, but resources in-
crease with increasing pressure up to the hydrostatic situation
(corresponding to the maxima of the curves), where gains with
respect to the elastic limit are of 24% for the thicker tube and 11%

0.3 :
collapse, thin shell
0.2 e N\
S 4 elastic N\
S limit
0.1} 1
b/t=5
0 ‘ ‘ ‘
-1.5 -1 -0.5 0 0.5 1
(@) o,
0.15
thin shell
collapse =<
0.1 7 X
¢ elastic
s limit
0.05}
| b/t=10
0 L ‘ ;
-1.5 -1 -0.5 0 0.5 1
(b) nc,

Fig. 7 Comparison of collapse levels, elastic limits, and thin-
shell approximation
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for the comparatively thin one. Already in the case of pure pres-
sure, stress redistribution contributes to a significant amount (17%
and 8%, respectively).

The limit loads predicted by the thin-shell assumption are also
depicted in Fig. 7 (dashed lines). They are simpler to compute, but
underestimate the actual collapse pressure by an amount not com-
pletely negligible for pure pressure (5% and 2.5% in the two
cases) and of some significance in hydrostatic conditions, where
the assumption predicts a collapse pressure 10% below the correct
value for the thicker tube and about 5% in the second case.

It may be concluded that for b/t< 10, plastic resources are of
importance and a design based on the elastic limit is strongly
conservative. The thin-shell approximation appears adequate for
moderately thick casing or pipelines, above all when external
pressure is associated to axial tension, as often is the case. On the
contrary, nuclear power plant applications, involving very thick
tubes commonly operating in hydrostatic conditions, require a
more precise assessment of the load-bearing capacity, and the ap-
proach developed in this paper may be useful under this respect.

5 Conclusions

This study proposes a procedure for the evaluation of the col-
lapse load of cylindrical shells subject to pressure and axial force,
accounting for possibly significant wall thickness. The result is
obtained by using the kinematic theorem of limit analysis, which
produces the exact result (instead of a mere upper bound) pro-
vided that the collapse mechanism is identified without ambiguity.
A crucial role to this end is played by the assumption of general-
ized plane strain, imposing that axial strains are uniform without
preventing possible elongation of the tube. The assumption is rea-
sonable for long cylinders under axially symmetric loading, since
any attempt at possibly nonuniform longitudinal strains is con-
trasted by the adjacent portions and received indirect corrobora-
tion by numerical analyses performed on tubes of moderate
length, with no a priori enforcement of the constant axial strain
condition [3]. For the load conditions examined, the same results
as in this study were obtained.

Results are produced in parametric form, the parameter being
the ratio among the radial and axial velocities in the motion asso-
ciated to the collapse mechanism. Despite the unfriendly aspect of
the equations, their numerical integration by means of standard
software is easy (closed-form expressions for the integrals are
available, but advantages with respect to numerical integration are
questionable). In this way, families of limit interaction curves
(each referring to different radius-to-thickness ratios) can be pro-
duced, which permit, for any of the load conditions considered, an
easy assessment of the safety factor with respect to plastic col-
lapse and may provide a useful alternative to computation. For
specific, but important, situations the collapse limits are expressed
by simple formulas, such as Eq. (22) for pure external pressure or
Egs. (21) for the hydrostatic condition.

Comparison to existing formulas, mostly based on simplifica-
tions that consider the tube as a thin shell, shows that the more
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accurate collapse loads obtained in this paper are systematically
higher. For moderately thick tubes, such as those used for pipe-
lines or casings, benefits are limited, even if not completely neg-
ligible. On the contrary, when tubes are really thick, as envisaged
for steam generators of some fourth-generation nuclear power
plant studies, advantages are significant and well worth exploiting.

The results obtained are fairly general in that they account for
any combination of external and internal pressures and axial load.
However, the situation considered of greater interest refers to
tubes subject, besides axial forces, to external pressure acting
alone or exceeding the internal one. In such instances, interaction
with instability should be considered. This is known to reduce the
load-bearing capacity of medium-thick shells by a non-negligible
amount and it is expected to play some role also in tubes of
significant thickness. The subject is presently under study. In any
case, the theoretical collapse load is the reference value to which
corrections accounting for the effects of instability are applied and
its precise evaluation seems to also be important to this purpose.
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On a Perturbation Method for the
Analysis of Unsteady Belt-Drive
Operation

A perturbation method is presented for use in analyzing unsteady belt-drive operation.
The method relies on the important assumption that for operating states close to steady
operation, the friction state (i.e., whether the belt is creeping or sticking at any location
on the pulley) is similar to that of the well-known steady solution in which a lone stick arc
precedes a lone slip arc (Johnson, K. L., 1985, Contact Mechanics, Cambridge U.P,
London, Chap. 8; Smith, D. P, 1999, Tribol. Int., 31(8), pp. 465-477). This assumption,
however, is not used to determine the friction force distribution, and, in fact, the friction
forces in the stick zone are found to be nonzero, in direct contrast to the steady solution.
The perturbation analysis is used to derive expressions for the span tensions, the pulley
tension distributions, the contact forces between the belt and the pulleys, and the angular
velocity of the driven pulleys. Validity criteria are developed which determine bounds on
the operation state for which the assumed friction state is upheld. Verification of response
quantities from the perturbation solution is accomplished through comparison to quan-
tities predicted by an in-house dynamic finite element model and excellent agreement is
found. Additionally, the finite element model is used to verify the key assumption that a
lone slip arc precedes a lone stick arc. [DOI: 10.1115/1.1940660]

1 Introduction

Belt drives are widely used to transmit power between machine
elements. Common applications include drives transmitting power
from electric motors to rotational elements in home appliances
such as washing machines, vacuum cleaners, and tape drives;
from gas engines to cutting elements in lawn and garden equip-
ment such as lawnmowers, rototillers, and snow blowers; and
from the crankshaft pulley to accessory pulleys in automobiles
and other transportation vehicles, where the accessories include
alternators, air-conditioning compressors, and power-steering
pumps. The life of the belt drive in all these applications depends
critically on the tension magnitudes in the belt spans and the ex-
tent of belt creep on the pulley.

Even in a belt drive transmitting a constant torque between
machine elements, the translating belt is subjected to cyclic ten-
sion variations as its tension transitions from a larger to a smaller
tension on the driver pulley, and then from a smaller to a larger
tension on each driven pulley, before returning again to the driver
pulley. As a result, fatigue of the belt, and the subsequent perma-
nent set and loss of compliance, is a large consideration in belt-
drive design. Additionally, the belt is subjected to sliding wear as
the belt creeps against the pulley during tension transitions. This
wear can have a detrimental effect on the belt’s friction character-
istics as the belt surface deteriorates, and can lead to gross slip
and noisy operation. These considerations motivate the need for a
thorough understanding of belt-drive mechanics, and the need for
belt-drive models which can accurately predict belt span tensions
and belt creep.

The earliest studies of belt-drive mechanics include Leonard
Euler’s study [1] of a belt wrapped around a fixed pulley or cap-
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stan, and Grashof’s study [2] of the frictional mechanics of belt
drives under steady operating conditions. A comprehensive review
of studies on belt-drive mechanics after Grashof and up to 1981 is
given by Fawcett [3]. The aforementioned studies of Euler and
Grashof developed the classical creep theory of belt-drive opera-
tion. In this theory, a Coulomb law governs the belt-pulley fric-
tional contact, and the belt is treated as a string which adheres to
the pulley in an initial adhesion arc, and creeps against the pulley
in a subsequent slip arc. Classical creep theory was reviewed by
Johnson [4], and recently updated with new inertial effects by
Bechtel et al. [5] and Rubin [6]. Smith [7] experimentally verified
the existence and locations of the classically predicted stick and
slip zones using a very thin, data tape cartridge. Other studies
have considered the mechanics of the belt drive with belt shear
effects, including Firbank [8] and Gerbert [9,10]. Gerbert [9,10]
also included seating/unseating and radial compliance effects in
his analysis. Townsend and Salisbury [11] derived the power loss
expression and the efficiency limit of a belt drive assuming the
validity of the classical creep theory.

Much recent emphasis of belt-drive studies has been on the
dynamic response of automotive serpentine belt drives to crank-
shaft excitation. Serpentine belt drives include an automatic ten-
sioner which attempts to take up belt slack in the drive system.
These studies have considered both the rotational response of the
pulleys and/or the transverse response of the axially moving belt,
and have simplified the belt-pulley contact to linear stretching and
viscous damping models. Barker [12] studied belt-drive tensions
resulting from rapid engine acceleration, Hwang et al. [13] studied
the periodic rotational response of the serpentine belt drive, and
Beichman et al. [14-16] studied the coupled rotational and trans-
verse response of a three-pulley prototypical serpentine belt drive.
Leamy et al. [17,18] included a Coulomb dry friction damper to
the tensioner arm element, and also studied the serpentine drive’s
rotational response. Kraver et al. [19] linearized the dry friction in
the tensioner arm and developed a complex modal approach to
analyze the drive’s rotational response. Most recently, Kong and
Parker [20,21] have included bending stiffness in their analysis of
the belt spans and have found an alternate mechanism responsible
for coupling rotational and transverse belt motions.

The two groups of studies reviewed above, namely belt-drive
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mechanics studies and serpentine belt-drive dynamic response
studies, have had little connection to each other due to the lack of
dynamic excitation in the belt-drive mechanics studies, and the
lack of true frictional belt-pulley modeling in the serpentine belt-
drive studies. Leamy et al. [22-24] attempted to bridge this gap by
studying simplified dynamic models for small [22] and large
[23,24] rotational speeds. These studies considered individual pul-
leys only, and did not calculate the global response of the entire
belt drive. Furthermore, the case of medium rotational speeds was
not addressed.

Detailed modeling of the belt-pulley contact and the rotational
and transverse response of a two-pulley, spring-supported, belt
drive has recently been completed by Leamy and Wasfy [25,26],
which does combine accurate belt-pulley contact mechanics with
serpentine belt-drive system response [27]. In the latter studies, a
dynamic finite element model of the belt drive was developed
using truss or beam elements for the belt, rigid constraints for the
pulleys, and a penalty formulation for modeling the belt-pulley
contact. No restrictions were made on the steady/unsteady char-
acter of the rotational speeds or accessory torques, and the result-
ing model was shown to be general enough to capture coupled
pulley rotational and span transverse response. Although accurate
and effective, the finite element model has inherently two major
disadvantages: (1) a large computational expense, which is par-
ticularly inconvenient for parametric and sensitivity studies, and
(2) an inability to easily reveal underlying physical phenomena
due to the availability of only time-history data.

As an alternative to the finite element model, this study presents
a closed-form analysis of the frictional contact and global behav-
ior of belt drives for the practically important case of unsteady
belt-drive rotational response. Use of a perturbation method ne-
cessitates focusing on unsteady belt drives operating in proximity
to a steady state, although validity criteria reveal that due to the
large tension differential required to initiate belt sliding, the valid
range of operation states is large enough to include typical auto-
motive applications. The lone stick and sliding regions, their ten-
sion distributions, and their locations on the pulley are investi-
gated using closed-form expressions ideally suited for parametric
and sensitivity studies. The solution procedure is applied to an
example two-pulley drive and global response quantities are cal-
culated and compared to the finite element model in order to
verify the analytical solutions.

2 Closed-Form Analysis: Governing Equations

The analysis of the unsteady operation of a belt drive is pre-
sented herein using a perturbation approach in which the relative
belt motion (as compared to the pulley motion) is assumed to be
similar to that of a steadily rotating belt-drive—i.e., where sliding
is present, the two share the same direction of sliding, but do not
necessarily share the same extent of sliding and/or sliding magni-
tude. During steady operation (i.e., constant applied torque and
angular velocities), the belt slips in a single direction in a lone slip
zone at the trailing edge of the pulley [4,7], as shown in Fig. 1. A
stick zone occupies the remaining portion of the belt-pulley con-
tact zone. The analytical solutions presented herein for unsteady
operation are developed based on an assumption of similar contact
behavior—single slip zone, single stick zone—which forms the
basis for an asymptotic perturbation procedure. Following devel-
opment of the perturbation solution, criteria are presented in Sec.
4 for assessing the appropriateness of this assumption based on a
candidate drive’s parameter space.

2.1 Element Conservation Equations. The equations gov-
erning the motion of a belt element in contact with any pulley
(driven or driver) are developed using a fixed element control
volume evaluated using conservation principles, resulting in a Eu-
lerian description of the belt kinetics. Belt strain and stress, as
well as material constitutive modeling, are developed using a La-
grangian description of the belt. Following development of the
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Example two-pulley belt drive

governing equations, boundary conditions are specified based on
the quasi-static assumption of a single span tension. In this way
the spans serve to connect the belt element domains. Although a
two-pulley drive is explicitly considered, generalization to a drive
consisting of any number of pulleys is straightforward.

Considering a belt element in Fig. 2 for any pulley, the mass
flow rate G of material is given by

G(s,t) = pvA, (1)

where v(s,7) denotes the belt velocity, p(s,?) the belt density, and
A(s,1) the belt cross-sectional area at location s and time ¢. Note
from Fig. 1 that each pulley is considered to have an arc measure
s originating at the trailing edge of the pulley. Conservation of
linear momentum yields tension distribution equations along the
contact arc,

S Fey = Zm) ey = (nV)+ (m¥) @

where the tangential component of (2) yields

T (s,1) dG(s,1) v(s,t)  IG(s,1)
— +f(s,) = +G +v
Js ot as as

N E)
and where f denotes the friction force per unit length between the
belt and the pulley. The normal component of (2) yields

B T(s,t) — G(s,0)v(s,1)
- R

n(s,t) R (4)
where n denotes the normal force per unit length. In the
following, (3) and (4) are specialized to driver and driven pulleys
with introduction of GPR(s,7),TPR(s,r),vPR(s,r) and GPN(s,1),
TPN(s,1),vPN(s,1) representing mass flow, tension, and velocity
along the driver ( PR) and driven ( PV) pulleys, respectively.

LA
» ./%T(sws)

v(stds)

Fig. 2 Belt element used to develop the belt-drive governing
equations
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Belt spans connect the driver and driven belt domains. For ex-
citation periods 7=27/w much longer than the time for longitu-
dinal waves to travel down the belt span and reflect back (ie.,
w<(mVE/p)/L), it can be accurately assumed that a uniform
strain exists throughout the span length at any time ¢. With this
quasi-static assumption, the following boundary conditions can be
used to relate the belt tensions at the inlet and exit of the driven
and driver pulleys,

Ty(1) = (TDR(SJ)|s=R¢>DR = TDN(S,t)‘S=0)’ Q)

TL([) = (TDR(S!Z)L:O = TDN(S!Z)|,\'=R¢DN) s (6)

where Ty(r) and T (r) denote tension in the high-tension and low-
tension spans and ¢pg(), Ppy(t) denote slip arc metrics along the
driven and driver pulleys—see Fig. 1. Note: the tension boundary
conditions as stated are only approximate at s=R¢pr and s
=Rd¢py since, due to the stick zone, the tensions at these points
are actually equal to high and low tensions, respectively, at a
previous time. This previous time is shifted from time ¢ by an
amount equal to the time it takes the belt to traverse the stick zone
and reach s=R¢pg or s=R¢ppy. Similar boundary conditions re-
late the driven and driver belt speeds at the inlets and exits, as
well as relating belt speed to pulley angular velocities. Specifi-
cally, since a stick zone is assumed to exist at the inlet, the belt
speed at this location is related to the pulley speed by

vﬁR = VDR(SJ)|3=R¢DR = Rwpp, (7a)
VPN = VDN(SJ)|s:R¢DN =Rwpy- (7b)

At the exits the velocities must be determined and are given as

VZNz VDN(S’Z)L':O’ (80)
VIL)R= VDR(s,t)|X=0, (8D)

where VR, vEN vPR and vPV denote the belt speeds entering and

exiting the high-tension and low-tension spans. Note that unlike
the steady solution, the high-tension belt speed exiting the driven
pulley VZN is not equal to the high-tension belt speed entering the
driver pulley v,[_’,R—similarly for the low-tension belt speeds.

2.2 Friction Law. A Coulomb friction law is adopted in this
study to describe the contact friction between the belt and the
pulleys,

fls) = {_ un(s), slip zone(driver), o

un(s), slip zone(driven),

where u denotes the sliding coefficient of friction. The friction
force in the sick zones is not known a priori—see Sec. 4.2 for its
calculation. Use of (9) in (3) and (4) results in the following
equations governing the tension distributions along the driver and
driven pulleys:

ITPR(s,1) TPR(s,1) — GPRVPR(s,1)  dGPR(s,1)
— M =

. GDR&VDR(s,t)
ds R ot as
IGPR(s, ¢t
+ VDRﬁ’ (10)
as
ITPN(s,1) TPN(s,1) - GP"WPN(s,1)  aGPN(s,1)
+ =
Js r R ot
avPN(s,t IGPN(s,t
+ GPN ( )+vDN ( ). (11)
as Js

2.3 Stress-Strain Relations. Using a Lagrangian description,
a differential belt element with undeformed length ds..; has de-
formed length,
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Fig. 3 Control volume used for driven pulley conservation of
angular momentum

ds = (14 NT(s))dsyef,
and deformed area (due to Poisson effects)
A(s) = (1 = UAT(5))*A s, (13)

where N=1/FA is a measure of belt compliance. Finally, the den-
sity in the deformed state follows as

(12)

( ) Myt prefArefdsref ( 1 )
S)=—= = .
P V T Alds N1 = \T()(1+ A T(s)) ) P
(14)
A more convenient expression is p(s)A(s),
prefAref )
A(s) =\ —— . 15
p(s)A(s) (1 N T(s.) (15)

Note, the definition of G can be updated to the following expres-
sion:

prcfArch(sv t)

G0 = N T

(16)

2.4 Global Drive Relations. Global drive relations are
needed to determine global quantities such as the span tensions
and speeds. Application of conservation of angular momentum to
the fixed control volume shown in Fig. 3,

d
r><F+M=—f (r><v)pdV+f (r X v)pv-dA,
o C.V. C.S.

(17)
yields
g DN .
R(TL—TH)+M=_ -RG (S,t)dS—IwDN
d Belt
+ R(GPWEN _ IV, (18)

where [ denotes the pulley’s mass moment of inertia about its axis
of rotation, M is the moment resisting the driven pulley motion,
and where subscripts L and H denote quantities evaluated for the
low- and high-tension spans. A second relation derives from belt
length compatibility which equates the unstretched belt length cal-
culated from the geometry of the deformed (or operating) configu-

ration to the known unstretched belt length L%,

ds
§iro-i 19)

where the integral is taken over the entire belt length, ds is an
element of length in the deformed configuration, and strain is
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related to tension by € =AT where A=1/EA is a measure of
compliance. As will be discussed in Sec. 3, exact satisfaction of
(19) should not be expected due to the quasi-static assumption
invoked for the span tensions, but near satisfaction is possible as
discussed in Sec. 5.

Time-dependent consideration of each span is also required for
unsteady operation. The rate of change of the span’s strain deter-
mines the rate of change of each span tension. Considering the top
span, the strain rate can be expressed as

. _1<L—L0)_ (1+\Ty)dL,
ST\ L, )T L, dt’

where L denotes the span’s current length and Ly=L/(1+\Ty)
denotes an equivalent unstretched length. Accounting for changes
in L due to belt entering the span (AL);,=vi"/(1+\Ty)-At and
leaving the span (ALg),=RwPR/(1+\Ty)-At, the desired ex-
pression for the time rate of change of the span tension can be
stated as

(20)

dry (1+\Ty) b

= =———(R —vhN), 21
e VAR @)
while a similar expression can be stated for the low-tension span,
dT; (I+\Ty) DR
— = =———(R - . 22
di €L L, (Rwpy=vi") (22)

The global drive relations (18)—(22) apply to the two-pulley drive
explicitly considered here, but a drive consisting of any number of
pulleys is easily analyzed by including an additional angular mo-
mentum relation (18) for each driven pulley, and by including a
time-dependent span relation similar to (21) for each additional
span.

2.5 Perturbation Quantities. A natural small quantity arises
from the prescribed expression for the driver pulley angular ve-
locity,

0 1 .
wDR(t) =wprt stR(t) = Wgready + W, SIN I
(23)

where for small oscillations about a steady speed, the small pa-
rameter € can be defined as €=,/ Wgieqqy- Other quantities in the
problem can then be expanded in a classical perturbation approach
using this parameter. Following this approach, the driven pulley
angular velocity is assumed to have the form

Ogieaay(1 + & sin 01),

wpy = wODN(t) + sw})N(t) +& wDN(t) +0(&%). (24)

Expanding all remaining response quantities results in the follow-
ing perturbed expressions for the mass flow rate, tensions, veloci-
ties, span tensions, and slip arc magnitudes,

GPR =GR+ eGPR(1) + 0(8?), GPN=GOV+eGN(r) + O(&?),

(25a)

TPR = TDR(s) + eTVR(s,1) + O(?),  TPN=THN(s) + eT?N(s,1)
+0(&?), (25b)

VPR = VBR(s) + evPR(s,0) + O(?),  vPV=vEN(s) + evP™(s,1)
+0(&?), (25¢)

T, =T +&Ti(t) + O(s?), Ty=T%+eTH(1)+0(c?),

(25d)

vV = yP VL0 +ev) bl + 0D, viN=vh VHO + evH () + O(e?),
(25¢)

ViR =vib+evii(n + 0(e?), vif=vph+evifi(n) +0(e?),
(251)
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PR =g +edM (D) + 0, ¢V =g + e (1) + O,

(25g)

where it is expected that O(e”) quantities will recover the steady
solution. Note that the spatial variation of the mass flow rate G on
the pulley contact arc has been neglected in the assumed expan-
sion (25a) in order to simplify the analysis of the tension distri-
butions. This assumption is instead a fact for the steady analysis
[5], and thus for the O(e”) analysis presented herein. Tension
terms arising due to the spatial variation of G, are expected to be
negligible for stiff belts, where stretching is minimal—evaluating
a mass conservation statement shows the spatial change in Gy is
inversely proportional to the belt stiffness. Analysis of the belt
velocity is the primary concern of Sec. 4 and is computed directly
from the tension distributions without a need to restrict the func-
tional form of G.

3 Analytical Solution Approach

The perturbation quantities are now introduced into the equa-
tions governing the tension distributions and are then separated
into orders of e.

3.1 Ordered Equations. Substituting the expansions into the
definition of the mass flow rate G(s,1), (16) yields

0. GDR_ PeiAeV0 () o _ PrerAref¥o(5) 6a)
R OV ;- ) IS B VA O
e's GPR(p) = prefArer?R(s 1) B GINTYR (s, 1)
o +ATR(s) 1+ ATPR(s)
GPN(p) = PretAretVi (5,1) _ GENNTN(s,1) (265)
' TNTPN ) 1+ATNGs)
and the tension distribution equations (10) and (11),
aTPRGs)  TPR-GPRER 4
0 0 0 DR_DR
: - =—(G 27
o Th -t = GV, (2T
AT (s TN - DNVDN 9
0 ( )+M 0 —Go Vo (Go NDN(5)), 27)
s R
b ) TSGRV GOt
. ds R O gs
VPR 9GPR
HGI— (284)
as ot
I (s, 1) . ILTzl)N GPNyPN _ GPNDN _ oot PV o VOV
ds R 0 s 1 &s_
JGPN
— (28b)

ot

The tension and velocity boundary conditions (5)—(8) separate
into orders of & readily at s=0,

e Ty=T0"0leo T1= 10500 (290)
Vi = Vo ()l=os V20 = V0 (5)]s=0» (295)

et Tyt = TP(s.0| im0 T1(0) = T7R(s.0)] 0. (30a)
v (D) = V(s 0l VET(0) = VY (5,0)] =0, (30b)

whereas the presence of ¢ in both the expansions for ¢pg, ¢py
and in the expansions for tensions and velocities do not yet allow
O(g) separation of the s=R¢pg and s=Rdpy boundary condi-
tions. Conservation of driven pulley angular momentum (18)
yields
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&% R(T)-T%) +M=RGS"(vDy - Vi), (31a)

l

et R(T ) - TH(t))+I DN_RGSN(VLD 0 - vi\(®)

+ RGPV (VP - vy, (31b)

where the belt acceleration term at O(e') has been assumed neg-
ligible compared to the pulley acceleration term. Exact compat-
ibility (19) separates into & orders as

ds
0 belt
e —=L",
’ L+\To(s)

N NT(s,0)ds o
T NT(s)?

Finally, the time-dependent span relations separate into

(32a)

(32b)

€% 0=(1+\TH)(Rwpr—VEO)/ALy, 0= (1+\T)(Repy

—VPRINL, (33a)
L dTl  14ATY, RTL(I) by
e dt = v (RwDR(t) V[-]]) (R Wpr = VH0)>
(33b)
Ty 1+\T) AT, (1)
T L (Raob (1) - vPR) + B AL Opy= VL)
(33¢)

3.2 £ Solution. The solution for the O(&”) response quanti-
ties now follows sequentially from the O(£") equations developed
above. An expression for v, can be obtained in terms of the mass
flow rate G, and the tension T from (26):

vols) = (1+\To(s)). (34)
PrefAref

Substitution of (34) into (27) yields differential equations govern-

ing the spatial change of T(L))R(s), TgN(s) in the slip zones. Solution

of these equations and application of the s=0 boundary conditions

(294) yields the tension distributions,
DR’ DR2
K prefAref )\GDR
(35a)

T"(s) = (T‘Z—

prefAref - )\Gg

PrefA ref(ZG([))R G?R (R/) (prefA

2 2
GDN GDN

—DN) it
prefAref_ }\GO prefAref }\G
(35b)

which are those obtained in the steady case [5]. With functional
forms now known for 75%(s) and T5"(s), the boundary conditions
at s=R¢pg and s=R¢py can be stated at O(g),

TgN(S)z (Tﬁ,—

80: 7?-1= Té)R(s)|s=R¢DR7 72= TODN(S)|S=R¢DNv (36)
Vfllf)z Vo R(s)‘ s=Repp = Rw(l))R’ V?](\),— V()N(S)| s=Repy = Rw(,))N.
(37

The two boundary conditions (37) yield the mass flow rates,

RprcfArcf 0 RprcfArcf 0
T() Wpps 70 Wpys

while substitution of (34) and (38) into (33a) yields the fact that
the O(s°) mass flow rates are equal as in the steady solution, i.e.,

GD R GD N=G,, and yields the driven pulley’s angular velocity,
o _LHNTY

Gy =0 G =0 (38)

Wpy = Wpg- 39
DN= N, “PR (39)
The slip arc metrics are given by solution of (36),
DR _ DN _ l 1 - Gé/(prefAref_ }\G(z)) (40)
O N T~ G perAr— NG )
H L G() (pref ref 0)

The only remaining quantities to find are then Tﬁ and 7(1)1 using the
global drive relations. This is accomplished by solving (31a) for
72 and substituting this result and (35), (38), and (40) into (32a).
Note that the quasi-static tension assumption invoked earlier is
exact for the O(e”) tensions since they are independent of time,
and so exact satisfaction of (32a) is possible. Finally, a root solver
can be used to solve the remaining equation for 721 once the belt-
drive parameter space has been defined. This procedure is com-
pleted for an example drive in Sec. 5.

3.3 &! Solution. Following a similar procedure to that devel-
oped for O(&?), the O(e') equations are solved sequentially. Re-
arranging (26b) for v,

(1 + )\TO(S))GI + )\Tl(s [)GO

prefAref
the driver and driven tension equations (28) can be expressed as
unknown functions of T? R(s,t) and T? N(s,1). Upon substitution of
(41) into (28), solutions are found, and the O(e') s=0 boundary

conditions (30a) are applied. The resulting tension solutions are
given as

vy(s,1) = (41)

f
ret e(/-L/R)S

TP (s.1) = (rzm -

prefAref(ZGé)RGDR (R/M) (prelA

2.
(prefAref_ )\GgR )2

— NGPR)(9GPR151)) )

— NGPF)(9GP*1ar))

ref

(pref Aref

PreiArei(2GG GPN + (R 1) (posA;

DR2)2 K (42a)

ref — —(u/R)s

N(s,1) = (T},(t)

+ prefAref(ngNGll)N (R/lu')(prefAref

(prefAref_ )\GODN )2

~NGPY)(aGPN/ar)) )
e

DY 9GPV or))

(42b)

(prefAref_ )\GODN )2
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With the functional forms for the O(¢°), O(g') tensions and the
0(&% slip arc metrics known, the boundary conditions at s
=R¢pg and s=R ¢y can be stated. Substitution of T5%(s), T5™(s),
T?R(s,tl), T?N(s,t), 5’*, and 5” into (5) and (6) yields
GDR2 DR
g ?R<7? SRV )‘” + TP (s =REP%0 =T},
prefAref - }\GO
(43a)

Gbv o
wg?y 7(,),——0 s e 0 + TPN(s =R ODN,t)le,
prefAref_ AGODN
(43b)

where all dependence on in (43) appears outside of
the exponential, and outside of the expressions for 7. This allows
for ready evaluation of the O(e!) slip arc metrics,

Ty —T"(s = Rgp",1)

2 2 DR
M(T(z - G{))R /(PrefAref_ )\G(I))R ))eﬂ(%

?R and IDN

DR _
D=

- T+ TPN(s=RpN1)
M(T?i - GgNz/(prefAref - }\G([))Nz))e_'ud)glv
A similar procedure for the velocity boundary conditions (7) can
be pursued, but yields unnecessarily lengthy expressions for
G?R(t), G?N(t). Since the quantities of interest in this section of
the analysis are the tensions, a simpler, approximate approach is
taken to determine the expressions for G?R(t) and GII)N (1) to be
used in the tension distributions. Decoupling ordered belt veloci-

ties at s=R¢pr and s=R¢py in a manner similar to that at s=0,
(7) can be replaced with the approximate expressions

DN _
V=

(44)

VDR(S»t)|s:R¢DR = VODR(S)|S:R¢%R+ SVIDR(‘Y’IHS:R(}%R

=R\, + eRwp(1), (45a)
VDN(sat)|s:R¢DN = VODN(S)|S:R¢%N+ SV?N(SJNS:R(})%N
= Rw%N + sti)N(t). (45Db)

Expressions for the mass flow rates at O(g') then follow from (41)
evaluated at s=R¢ppgr and s=R¢py together with (45),

RprefAref wll)R(t) - )\Gé)RT[]-I([)
1 +\TY,

G (1) = ,
RprefAref w;)N(t) - )\GODNTi(t)
L+ATY '

Unlike in the O(g%) analysis, three quantities remain to be deter-
mined: TZ(Z), T,l_,(t), and w;)N(t). O(e") conservation of angular

G?N ( l‘) —

(46)

tions comprise three nonhomogenous, constant coefficient, linear,
ordinary differential equations for the O(e!) span tensions Ti(t),
Tlli(t) and the O(e') driven pulley angular velocity wll)N(t), which
with use of (23) can be placed in the form

Ty(t)
i) |,

(u;)N(t)

Ax+Bx=f-sin(wr), x(1)= (47)

where A, B, and f are given in the Appendix. Following definition
of the belt-drive parameter space, particular solutions to (47) are
found numerically with the resulting expressions being expressed
as

x(1) = ¢ sin(wt) + d cos(wr), (48)

where

d=[-wA-B-[wA]""-B]'-f, c=—[wA]"'-B-d.

(49)

4 Validity Criteria

In this section, a criterion governing the validity of the solution
approach is developed by requiring that in the slip zone, the belt
velocity is always greater than the pulley surface velocity for the
driven pulleys, and always less than the pulley surface velocity for
the driver pulley. A second criterion is developed by requiring the
stick zone friction forces to be less than the maximum available
friction force. Together, the two criteria form the required condi-
tions on the solutions for the valid existence of a lone slip and
stick zone.

First, the belt velocity in the pulley slip is accurately analyzed
using the resulting tension distributions of Sec. 3. Recall that an
approximate mass flow rate at O(e'), and thus belt velocity at
O(e"), was used in determining the tension distribution expres-
sions. While this is expected to have very little effect on the ten-
sion distributions calculated due to the small effect of inertial
tensioning, it may have a significant effect on the calculation of
the difference between the belt’s angular velocity and the pulley’s
angular velocity, this difference being an O(g!) quantity.

4.1 Slip Zone Criterion. In what follows, the tensions (Sec.
3) are used to determine the belt velocity in the driven pulley slip
zone. A reconstitution procedure is first performed in which all
response quantities are returned to their unperturbed values. Re-
constituting the driven pulley slip-zone tension using (25), (35),
and (42), the tension takes the form

! o) conser TPN(s,1) = Ty(t)e™ W0 + T5 (1), (50)
momentum (315) provides one relationship, while (33b) and (33¢)
provide the other two necessary relations. Together, these equa-  where
|
2 2
o= 1- GeY ol 70— PrerAret(2G0 G + (RI ) (prsArs = NGG™ ) (9GP 1))
L W o) TELL _\(:DN*\2 ’
prefAref )\G() (prefAref )\G() )
2 2.
Te 7-() GODN 1 prefA ref(ZGODNG?N + (R/M)(pgefAfef - )\GODN )(8G?N/‘9t))
)=\ Ty- )t Ty(t) - PYEI , (51)
prefAref_ )\G() (prefAref - )\GO )
2 2.
,If ([) _ ( Gé)N ) + SprefAref(ZGODNGlDN + (R/,u/)(pfefAl%ef_ )\GODN )(&G?N/‘%))
G - 2 2
prefAref_ )\GODN (prefAref_ )\GgN )2
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Fig. 4 Coordinates used in determining the belt angular
velocity

are effective low, high, and mass flow tensions, respectively. Simi-
lar reconstitution procedures are carried out for the driven (wpy)
pulley angular velocity.

The angular velocity of a belt segment in the driven pulley slip
zone can now be developed using a rotating reference frame at-
tached to the driven pulley, as shown in Fig. 4. Coordinate 6
denotes an Eulerian coordinate measuring angular position of the

sures a second angular position. These two coordinates are related
by the following transformation involving the driven pulley angu-
lar velocity,
t
0=a+ f wpy(7dT, (52)

0

where no loss in generality is incurred by assuming 6 and « are
aligned at time zero. In what follows, all dependent variables will
be chosen to depend on the independent quantities « and 7, but
their functional dependence may be specified in terms 6, with
conversion to « implied by (52).

The displacement u,(«a,7) in the « direction at any time 7 fol-
lows from the tension distribution derived in Sec. 3. Specifically,

0'=0
ugla,t) = uy(t) + f MTSe ' + TSRO
0'=0

(53)
where u(7) denotes u,(a,t) evaluated at 6=0, i.e., evaluated at
a=—[{wpy(7)d7. Evaluation of (53) yields the expression

uy(a,t) = ug(t) + R(Aﬁ(z)(e’”’— 1)) +ANRT(1)6.  (54)
)

The total time derivative of u,(a,t) as seen by an observer mov-
ing with the pulley is then given by a material derivative expres-
sion

Duy o 1 JugDug

belt segment in the slip zone—it does not convect with the rotat- = , (55)
ing reference frame. Coordinate « is a Lagrangian coordinate that Dt g R oo Dt
does convect exactly with the rotating reference frame and mea-  such that
|
Du, A /ot  Qugldt+ (duJ30)(96/0r)  dugldt + NR((1/ ) (dTy/dr) (e’ = 1) + (dTgldr) 0+ (Tre’ + Tg) wpy) (56)
Dt~ 1=(1/R)(duda) 1= (1/R)(dud6)(36/da) ~ 1 - \(T5e"+T5) ’
[

where the time derivative of (52) gives 96/ dr= wpy. The final (i.e., dT/dte 1 dT;
relative to an inertial observer) angular velocity expression for a | + ;; > —opy(0)Ty(t) Vi (60)

belt segment in the driven pulley slip zone follows as

1 Du
DN a

0,t) = +——. 57
@ (0.0) = wpy+ 2 ; (57)
An expression is still required for duy/dt. Using the boundary
condition that the belt is stuck to the pulley at the start of the slip
zone, wPV(0=0,1)=wpy(1), one finds

J
Fo_ ARwpy (T} +T3),

po (58)

such that the final expression for the driven pulley belt angular
velocity is

wPN(0,1)

(1= M(Tg+ T) wpy + NdT5/d1) 0+ (M) (dT3/d1) (e = 1)

1= N(T;e"+ Tg)
(59)

The first validity criteria on the solution can then be determined
by requiring the velocity of the belt to be greater than the driven
pulley velocity for all # and ¢, insuring the friction force direction
inherited from the steady solution is kinematically correct. This
condition is met when w”N(6,1)> wpy(1), or when
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Evaluating this condition at the position of lowest expected veloc-
ity (#=0) yields the requirement

dT;

d_tL > — popy(t) T (1)

Yt (61)

Note that this criterion and its development are more general than
the analysis of Sec. 3 in that they are independent of the form of
the time rate of change of 7;—it holds for tension changes due to
driver pulley harmonic excitation as well as tension changes due
to acceleration and deceleration of the driver pulley, etc. For ex-
ample, one could propose a single slip zone and stick zone exists
on either pulley during driver pulley acceleration and again find
that (50) governs the tension distribution. Equation (61) would
then determine the validity of this proposal in regards to the slip
zone.

After a similar analysis for the driver pulley, the following cri-
terion governs the validity of the proposed solutions in the driver
pulley slip zone,

ﬁ < popr(NTH(t) Vit (62)

dt
4.2 Stick Zone Criterion. A second verification of the pro-

posed solutions arises from the requirement that the friction force
required to maintain the tension distribution in the stick zone not
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Table 1

Parameter space for the example two-pulley belt-drive

Wytead: Wose w EA
(rad/s)s (rad/s)  €=w,s) Wyeaqy (rad/s)  (N)

pA
(kg/m)  (m)

R M L T, 1
Nm)  (m) o N (kgm?)

120 1.885 0.016

1007

80,068 0.1036 0.08125 45

05105 1.2 827 0.2

be greater than that available. Again considering the driven pulley,
this requirement dictates that

If(s,0)| < un(s,t) ¥ s,t. (63)
Equation (3) can be solved for the friction force f(s,7),
dG  dvG) JT
fls,)=—+—"-—, (64)

+
ot Js as

which involves derivatives of the mass flow rate G. This expres-
sion can be simplified using conservation of mass,

J
—f pdV+f pv-dA=0.
alev. cs.

For the fixed, non-deforming control volume of Fig. 1 this expres-
sion evaluates to

(65)

J d
E(pA) + g(G) =0. (66)

Multiplying (66) by velocity v and introducing v into the deriva-
tives results in

G v v IVG)
—=pA—+G—-———. (67)
ot at Js ds
Substitution of (67) into (64) then yields the expression
fsn=paZ g2 (68)
N=pA—+ G-~
y P ot ds  oOs

which in the stick zones simplifies further since the stick zone

velocity v=Rwpy(1) is not a function of s,

&a)DN JaTr
o ds’

Substituting (4) and (69) into (63), the stick zone criterion can be
restated as

f(s,1) =RpA (69)

dwpy T

70
ot ds (70)

RpA < %(T— GRopy(1) ¥ sit.
The tension distribution in the stick zone, by definition, is such
that the tension at any location s is that of the low-tension span at
a previous instance of time. Therefore,
or 1 1 dT,

- . (71)
Js R WpN dt

t=t'

where T} is evaluated at the previous time #', i.e., the present time
minus the time for a belt element to have reached s starting from
s=Rr. Since the right-hand side of (70) can be considered rela-
tively constant in time due to the perturbation expansion about the
steady solution, (70) must be satisfied at a point s which maxi-
mizes the left-hand side, which is a function of nonconstant rates
of change. It is chosen to evaluate (71) at a location s such that

dT,/dt|.-, = dT,/dt|., which is likely to yield the largest value
of the left-hand side at all times 7. The stick zone criterion can
then be updated to

'This statement would be exactly true if wpy was constant.

Journal of Applied Mechanics

Jw 1 dT,
RpAZERN o —— ZLl B _ GRupy(1)

Vit (72)
ot  Ropy dt R

Note that when the inertia of the belt is considered to be negli-
gible, as is the case in most belt drives, this criterion simplifies to

dr, < popn(OT (1) Vi, (73)

dt
which closely matches the slip zone criterion (71) evaluated with
negligible belt inertia.
A similar analysis of the driver stick zone yields the criterion

Ty < pwpr()Ty(t) Vit (74)

dt

4.3 Summary of Validity Criteria. The validity criteria from
Secs. 4.1 and 4.2 can be summarized into two compact criteria,

dT, dT
< poprOTy(D), —= < popyOT, (1) V1, (75)

dt dt
where an assumption of negligible belt inertia has been made.
Note that for a given set of tensions 7; and Ty, drives operating at
lower oscillation frequencies and higher steady angular speed in-
creasingly satisfy the validity criteria.

5 Validation Results for an Example Two-Pulley Drive

The solution procedure presented in Secs. 3.1-3.3 is applied to
predict response quantities for an example belt drive composed of
a single drive pulley powering a single driven pulley, although as
earlier noted the procedure can consider any number of driven
pulleys. The analytical results are then compared to a finite ele-
ment simulation of the same drive. The parameter space for the
example drive defined in Table 1 is based closely on that found in
[25] and is typical of an automotive application. An initial belt
tension T, not previously defined, of 827 N is assumed. The belt
spans are chosen to be of length 27R such that the belt reference
length LS in (19) is 67R/(1+\Tp).

As remarked in Sec. 3.2, the tensions 7% and 7(1)1 can be found
from (31a) and (32a), completing the 0(8&) solution. The impor-
tant O(&") response quantities for the example drive are given in
Table 2. The tensions 7} and T}, follow from solution of (47),
completing the O(e') solution, and also appear in the table. The
full span tensions 77 (¢) and Ty(z) are plotted in Fig. 5, as well as
the full pulley angular velocities in Fig. 6. Use of the tension and
angular velocity information in the table shows that this drive
meets the validity criteria (75). It is noted from these results that
the analytical solution predicts span tensions neither in-phase nor
out-of-phase with the driver pulley excitation, but nearly out-of-
phase with each other. Inspection of (32b) shows that this is what
is essentially required to satisfy exact compatability at O(g'). The
growth and decay of the slip zones, as measured by d)? R(1) and
#PN(r), also show little phase correlation with the excitation
source. Finally, for this parameter set, the analytical solution pre-
dicts the driven pulley angular velocity oscillations to be small
relative to the driver oscillations, and nearly out-of-phase with the
driver excitation source.
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Table 2 Results for the example belt-drive defined in Table 1
0(&%
7{L) 7{1)1 ¢0DR ¢(1))N Gy wODR wODN
(N) (N) (rad) (rad) (kg/s) (rad/s) (rad/s)
553.0 1107 0.586 0.586 0.996 120.0 119.18
0(eh)
el (1) &T (1) e (1) e?(0)

(N) (N) (rad) (rad)
—11.39 5in(1007 1) 11.55 sin(1007 1) 0.0131 sin(1007r 1) 0.0087 sin(1007r 1)
84.02 cos(1007r 1) —85.17 cos(1007 1) —0.0963 cos(1007 1) 0.0641 cos(1007 1)

SG?R(I) SG?N(t) swll)R(t) ewa(t)
(kg/s) (kg/s) (rad/s) (rad/s)

1.55E-2 sin(1007 1)

-0.169E-2 sin(1007 1)

1.885 sin(1007r 1)

-0.219 sin(1007 1)

+0.104E-2 cos(1007 1) —0.105E-2 cos(1007 1) —0.030 cos(1007 1)

oscillations and is capable of simulating belt-drive performance
for a wide range of operating tensions, excitation frequencies, and
excitation amplitudes, although at a large computational burden.
Some insight into the behavior of the solution is also lost in the

In addition to the perturbation solution of Sec. 3, an in-house
finite element code [25], termed dynamic interaction simulator
(DIS), was used to generate results for a similar two-pulley belt
drive. This finite element solution technique is not limited to small
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1200 /’..._,“ il ™ J__a-"'"",‘ fj"'”"\ i "l_‘\- i ———FET“
_ N Py " b g ! n
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159 181 1582 193 184 1586 1.56 197 158 159 2
Time (s)

Fig. 5 Tension time histories in the low- and high-tension spans for the analytical and finite element solutions
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Fig. 6 Pulley angular velocity time histories for the analytical and finite element solutions
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finite element solution as response information is available only as
tabulated numbers and not as closed-form expressions. In this
article, the finite element solution is used to verify the response
quantities predicted by the analytical solution, and to verify the
existence of a lone slip zone.

The finite element model consists of 450 belt truss elements and
two pulley analytical rigid surfaces, and shares the parameter
space of the belt drive defined by Table 1. A penalty approach is
chosen to model the contact between the belt and the pulleys, as
detailed in [25]. The simulation requires starting all pulleys at rest
and accelerating the driver pulley to an angular speed of
120 rad/s. Superimposed on the steady angular speed is an oscil-
lating angular velocity component of amplitude 18 rpm
(1.885 rad/s) at a frequency of 50 Hz, typical of an automotive
application. The simulation is continued until transients in the
response decay to near zero.

The span tension and pulley angular velocity time histories for
the finite element solution are also plotted in Figs. 5 and 6. As is
demonstrated in the figures, the phase information predicted by
the analytical solution for both the span tensions and the driven
pulley angular velocity is in very good agreement with the finite
element solution. The figures also document very good agreement
between analytical and finite element steady-state (i.e., O(g°))
magnitudes and with oscillatory (i.e., O(g")) magnitudes.

Evidence supporting the existence of a lone stick and slip zone
is provided by the finite element solution and is documented in
Fig. 7. The tension distribution along the driver pulley is plotted
for a single excitation period. Location on the driver pulley is
given in degrees measured counter-clockwise from the horizontal
(i.e., 3 o’clock) position. As in the analytical solution, the figure
documents an initial stick zone in which tension in the high-
tension span is “recorded” and then convected unchanged with the
pulley as time increases. All tension transitioning then occurs in a
lone slip zone at the pulley exit.

6 Conclusions

A closed-form perturbation technique has been presented for

1300
1200} 1
1100 1
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= 800} 8 4
z i —t-1.9-uu-|
+ @00l H ———te 904 5 :
: t=1908s
Toot f t=1912 % ]
e ! -~ t=19168 |
500} [ ]
4085 00 150 200 300
f [deg)

Fig. 7 Tension distribution (predicted by the finite element
model) along the driver pulley contact arc for one period of
excitation

veloped solutions. The perturbation solution technique was ap-
plied to an example two-pulley belt drive in order to determine the
drive’s global response. The resulting span tensions and the angu-
lar velocity of the driven pulley were compared to those predicted
by a model analyzed using an in-house finite element simulator.
Excellent phase and magnitude agreement was shown for all re-
sponse quantities compared. Furthermore, the finite element simu-
lation verified the existence of a lone stick and slip arc, an impor-
tant assumption used in developing the analytical solution.

Appendix

The expressions for A, B, and f appearing in Sec. 3.3 are as
follows:

the analysis of unsteady belt-drive operation. Response quantities AL O 0
predicted in closed form include the pulley tension distributions,
belt-pulley contact forces, and the slip zone metrics. Validity cri- A=|0 A O
teria have also been presented which guide the usage of the de- 0o 0 1
|
ARGk (L4 NTp)NRwg" R(1 +\T9)?
0 1+ A7) 1+\TY
Bo| - (1 + A\T)2NRwf® (1 + ATONRwE® CRUAATO)
- (1+\T9)? 1+\T9 L
2 2 2 3 0
“R+ AR DypArer@pr o AR ProyAreg@pr  NRprosA,ogpp(Tyy = Tp) IR profA g Ty = T7)
(1+\T9)? (1+NT9(1+\T)) (1+NT9X(1 +\T)) (1+AT2)(1 +A\TY)
R(1+\T%) o,
_| JRUAT
1 +\T} PR
0
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Electrostatic Forces and Stored
Energy for Deformable Dielectric
Materials

An isothermal energy balance is formulated for a system consisting of deformable dielec-
tric bodies, electrodes, and the surrounding space. The formulation in this paper is
obtained in the electrostatic limit but with the possibility of arbitrarily large deformations
of polarizable material. The energy balance recognizes that charges may be driven onto
or off of the electrodes, a process accompanied by external electrical work; mechanical
loads may be applied to the bodies, thereby doing work through displacements; energy is
stored in the material by such features as elasticity of the lattice, piezoelectricity, and
dielectric and electrostatic interactions; and nonlinear reversible material behavior such
as electrostriction may occur. Thus the external work is balanced by (1) internal energy
consisting of stress doing work on strain increments, (2) the energy associated with
permeating free space with an electric field, and (3) by the electric field doing work on
increments of electric displacement or, equivalently, polarization. For a conservative
system, the internal work is stored reversibly in the body and in the underlying and
surrounding space. The resulting work statement for a conservative system is considered
in the special cases of isotropic deformable dielectrics and piezoelectric materials. We
identify the electrostatic stress, which provides measurable information quantifying the
electrostatic effects within the system, and find that it is intimately tied to the constitutive

formulation for the material and the associated stored energy and cannot be independent

of them. The Maxwell stress, which is related to the force exerted by the electric field on
charges in the system, cannot be automatically identified with the electrostatic stress and
is difficult to measure. Two well-known and one novel formula for the electrostatic stress
are identified and related to specific but differing constitutive assumptions for isotropic
materials. The electrostatic stress is then obtained for a specific set of assumptions in
regard to a piezoelectric material. An exploration of the behavior of an actuator com-
posed of a deformable, electroactive polymer is presented based on the formulation of the

paper. [DOIL: 10.1115/1.1940661]

Introduction

The subject of electrostatics is the study of the effect of forces
generated between charges. Therefore, when electric fields are
present simultaneously with mechanical loading in a material, it
seems obvious that the influence of electrostatic forces should be
accounted for when stresses in the material are calculated. How-
ever, stresses due to electrostatic effects are often second order
compared to those due to other purely mechanical effects [1] and
therefore electrical forces are often neglected even as electric
fields are analyzed. An example of this is the linear theory of
piezoelectrics [2], where electric fields induce strain but stress due
to electrostatic forces, being quadratic in electric field, is ne-
glected. On the other hand, finite strains, nonlinear material be-
havior, the lack of mechanical loading, and other effects can lead
to situations in which electrostatically induced stresses are com-
parable with forces from other sources. Such cases have been
addressed for dielectric materials by several authors, beginning
with the pioneering contributions of Toupin [1] and Eringen [3].
Beyond those examples given above, new reasons for the need to
include the effect of electrostatically induced loading in the analy-
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sis of stress continue to emerge. For example, the analysis of
cracks including the effects of cohesive zones requires a consis-
tent treatment of electrically induced forces across cracks [4]. Ac-
tuators composed of electrically active polymers are emerging as
important devices [5] and these components function due to the
electrostatic forces generated in them. Thus, the question of the
electrostatic contribution to stress continues to increase in impor-
tance.

As noted above, treatments of electrostatic contributions to
stress have been provided previously [1,3]. In these papers, a se-
ries of electric fields is identified and added together to form the
total field. One field is that which would exist if the dielectric
material was not present and a second one is due to the effect of
polarization charge in the material and on its surface. These two
fields together compose the classical Maxwell-Faraday electric
field. To this is added what is designated as the local electric field
that is considered to be a function, through a constitutive law, of
the material’s strain and polarization. In addition, the electrostatic
forces (i.e., the Maxwell stress [6], whose divergence is the elec-
trical body force and whose surface tractions are the electrical
forces per unit area acting on interfaces) are taken to have a spe-
cific relationship to the electric field and consequently the formu-
lation is seemingly restricted. Apparently, no allowance is made
for the possibility that experiments will show that for different
classes of material the electrostatic forces and the Maxwell stress
will have some other relationship to the electric field and the
polarization than the one assumed. It should be noted that this
may not be an insurmountable restriction, since it is well known
that there is some arbitrariness in how stress is divided up into
electrical and material contributions [1]. Therefore, any discrep-
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R “4”side
Fig. 1 A dielectric body with body forces, surfaces tractions,
and free charges

ancy with experiment as far as the Maxwell stress is concerned
may be compensated for by adjustment to the constitutive law for
the material stress, presumably leading to nonlinear electrostric-
tive contributions. However, the structure just described is at the
very least inconvenient due to the restrictions on the permitted
Maxwell stress and due to the formalities used to construct the
electric field.

In the current paper, a different formulation of the problem is
presented, though one in which the basic physics is no different
from that used in Refs. [1,3]. However, the structure of the electric
field is taken to have a simpler form than used in Refs. [1,3] since
we make no attempt to identify different contributions to it such as
an external field, a depolarization field, or a local field. Instead, a
single electric field is utilized throughout and it is assumed to be
connected to material strain and polarization by a constitutive law.
Furthermore, no general prejudgment is made of the relationship
between the electrostatic forces (i.e., the Maxwell stress or alter-
natively the electrostatic stress) and the electric field and polariza-
tion. Instead, it is assumed that the electrostatic stress is measur-
able in experiments either directly through characterization of
stress and electric fields or through measurement of the constitu-
tive properties of the material. We note that our approach parallels
that used by Landau and Lifschitz [6] but we do not restrict our-
selves to infinitesimal elastic strains of isotropic materials and
piezoelectric materials. It is our belief that this formulation is
more versatile than what has been presented in the past and that it
is more suitable for incorporation into modern methods such as
finite element analysis.

Balance of Energy for a Deformable Dielectric Material

Consider a system consisting of dielectric materials, perfect
conductors, and free space. In the current configuration, the sys-
tem occupies the volume V as shown in Fig. 1. The system is
considered to be isolated so that there is no interaction between
electrical charges residing in the system and those outside. For-
mally, this implies that the volume of interest is shielded electri-
cally from its exterior or that the extent of the system is infinite,
since charges interact with each other over very long distances.
However, when practical calculations with approximations are at-
tempted, this formality can be ignored. The perimeter of the sys-
tem plus interfaces within it are designated S in the current con-
figuration. The internal interfaces separate the dielectric materials,
the conductors, and free space from each other. In addition, sec-
tors of dielectric with homogeneous or heterogeneous properties
may be separated by surfaces included within S, as may sectors of
free space.

Let the free charge per unit volume within V be g(x;,t) where x;
is the position of material points in the current configuration and ¢
is time. Free charge may be placed in free space, in which case x;

582 / Vol. 72, JULY 2005

is used to designate the position of the points occupied by free
space in the current configuration. Furthermore, let w(x;,) be the
free charge per unit area on the surfaces S and define ¢(x;,7) to be
the electrical potential everywhere within the system such that it is
continuous everywhere in space. Note that we will consider only
the electrostatic limit so that 7 plays the role of a load parameter as
far as the electrical variables are concerned and no attempt will be
made to explore Maxwell’s equations relevant to the electrody-
namic limit. On the other hand, time may have a real meaning as
far as the deformation of material is concerned, as may be the case
in strain-rate-dependent response or in the acoustic limit where
inertia has to be included in the balance laws. To complete the
variables to be considered in the external work statement, we
include the velocity v;(x;,#) of material points, the surface traction
Ti(x;,t) defined as the force per unit area acting on S, and b;(x;,1),
which is the body force per unit volume acting at points in V.
Note that the surface traction 7; and the body force b; arise from
sources other than electrical effects and, therefore, do not repre-
sent the influence of charges interacting at a distance or electrical
fields exerting forces on charges. The surface traction 7; and the
body force b; and any equivalent quantity defined in the current
state will be designated mechanical, though we do not make any
attempt to characterize how they may arise, whether they come
about by gravitational effects or other sources of force in materi-
als. To attempt to do so in too fine a detail and make distinctions
between forces that arise by electrostatic effects and forces that
arise from other effects would illuminate the arbitrariness in how
the designations electrical and mechanical are utilized in our
scheme; e.g., consider a purely ionic solid pressing against an-
other purely ionic solid to produce supposedly mechanical traction
between them. Much of the traction between the two solids in this
case will in fact be electrostatic due to the repulsion of like atoms,
although some of it will also develop due to quantum exclusion
effects. However, in any macroscopic treatment of this problem,
this interaction between the bodies when pressed together will be
represented by elasticity and the tractions thereby designated to be
mechanical.

Consider the physical laws governing the electromechanical
fields in the material. In the quasi-static limit, Maxwell’s laws
state that the electric field must be curl-free and Gauss’ law states
that the divergence of the electric displacement must be equal to
the volume density of free charge. Therefore,

OE; ad
Eijk_l=oz>Ei=__¢ (1)
oxy, ox;
oD;
—=qginV (2)
(7x,~
[Din|=w on S (3)

Here, n; are the Cartesian components of the unit normal to the
surface S pointing from the “—” side of the surface out towards
the “+7 side as shown in Fig. 1, and €;j are the components of
the permutation symbol. Then the notation ||| represents the dif-
ference or jump in the included quantity across the surface S such
that

Ip| =D} - D7 )

Furthermore, the electric displacement can be decomposed into
two parts such that

D;=koE; + P; (5)
where k is the dielectric permittivity of free space and P; are the

Cartesian components of the material polarization.
Conservation of mass implies that for a given material volume
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d dp v,
pdV=0=—+p—=0 (6)
dt v dt &x

1

where p(x;,1) is the mass density of the material. The principles of
conservation of linear and angular momentum are stated as

f(bi+bf)dV+J(Ti+Tf)dS=iJ pvdV (7)
\%4 S dt \%4

and
f eijkxj(bk+bf)dv+f
Vv S
(8)

Here the components of the electrical body force bf and surface
traction T¢ have been introduced. These forces arise directly from
electric fields acting in the material and are in addition to the
mechanical body force and surface traction. Furthermore, it is
assumed that the electrical body force can be derived from the
Maxwell stress tensor a'fjw such that

d
tjkxj(Tk+ Tk)dS_ dr f pEtjkxjvde
14

ot
bf=—Linv )
ox;

where the electrical body force is the effect of charges interacting
at a distance or, equivalently, the force per unit volume arising
from electric fields acting on charges. The traction relationship for
Maxwell stress is then

(10)

Then, in order to satisfy the principle of conservation of linear
momentum for a small surface element, the Cauchy stress in the
material, o;;, must balance the total surface traction such that
along with Eq. (10)

T+ TF=-

sznjHo?;[H onS.

njfoill= T,==njloy +oM|| (11)

where again Tj(x;,7) is the nonelectrical (i.e., mechanical) surface
force per unit area acting on S. This statement has an equivalent
meaning to Eq. (10). The Cauchy stress difference across a surface
must balance both the electrical and mechanical surface tractions.
Note, however, that the result in Eq. (11) illustrates why it is
difficult, if not impossible, to separately measure the Cauchy and
Maxwell stresses, since it shows that any traction measured by
mechanical means (i.e., by the only method available) is related to
their sum. Since there are no experiments that can separate the
effects of the Cauchy and Maxwell stresses unambiguously
[1,3,6], it is generally more profitable to consider their sum and
not to try to identify them separately. The sum will be termed the
total true stress.

Next, application of Egs. (6), (9), and (11) within the principles
of conservation of linear and angular momentum and recognition
that the resultant integrals must be valid for any arbitrary volume
yield

d oo d
Wiy Dy = g in (12)
ax; o ox; dr
and
g+ o-%: o'ij+0'§]v<1in Vv (13)

Thus, for the balance of angular momentum to be satisfied, the
total true stress must be symmetric. This requirement reflects the
fact that moments due to mechanical body forces and inertia can
be assumed, as usual, to be second order [7,8], but we must allow
for the possibility that electric effects induce first-order moments,
e.g., due to electric fields acting on dipoles in the material [1,3].
Since only the total true stress in the material must be symmetric,
it is possible that both the Maxwell and Cauchy stress tensors can
be nonsymmetric.
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Now consider the rate of work by agencies external to the sys-
tem. This external work rate is

dw d d
—=| bpdV+ | TwdS+ | ¢—(gdV)+ | d—(wdS)
a ], S L Par P

(14)

Note that this statement conforms to the usual definition of elec-
trical work, i.e., an increment of electrical work is given by the
electric potential ¢ multiplied by the increment of charge AQ. For
example, ¢A(gdV) is the work done by external agencies to bring
the charge A(gdV) from infinity to the point where the potential is
¢. The interpretation of the mechanical work done by the body
forces and surface tractions is obvious.

Based on the standard continuum mechanics results for the ma-
terial time derivatives of field quantities and volume and surface
elements [7, pp. 211-213], it can be shown that

d dg auk) (aq aq 0vk>
—(qdV)=| T +qg—|aV=| = +v,—+q—|dV (15
(gdV) (dz T ox, o o, ox (15)

and

dD; Ay a;
—+D,—-D,—
dr oxy, ax;

S (Ilas) =( n,-)ds (16)

Then, applying these results along with the balance of linear mo-
mentum, Eqgs. (11) and (12), we can write the work rate as
dr dxy  ox; !

dw qu
A n,| —
dr s J
s do; ji
+q— |dV - nHO' +0'M|\v,~dS— —L 4+ —LpdV
axy s v\ ox; o ox;

f dv; dr
p—v;
v dr

Use of the divergence theorem for a collection of subvolumes
whose union is V and which are separated by the interfaces that
collectively compose S gives

dw J dD (?Uk l?Ui
—==| —| ¢\ —+Di7——-—D;||dV
dr v 9%; dr dx  Ox;
f(b(azz)i
+ + U
v \drox;
J doy;  doly
+f —[(a,i+o§5’)ui]dv—f( Jii _L) av
v ox; v ox; ox;

+ % dv
Vpdt U,

where Eq. (2) has been used to dispose of the free charge density
q. Equation (18) simplifies to

dD;, v,
+D— 2= 2D,

(17)

#D, ﬁDi(?vk>
4 2Pk

ox ox;  Ox; dxy

(18)

aw

dr dr

+ % dVv
VP d U

where g;; is the Kronecker delta.
Note that in regions of space without material, the electric dis-
placement is defined to be [6]

dD, w,
f[E—+(U +aj¥—E,.D,.+Eka5i,.)—]dv
) _ i

(19)

JULY 2005, Vol. 72 | 583



D;= k,E; (20)

where k, is the permittivity of free space. In addition, the Max-
well stress in such regions is [6]

0’3'4 = Ku(EiEj - %EkEk(Sij) (21)

so that from Egs. (2), (9), and (20), we find that the electrical
force per unit volume is
bi = qE; (22)

which is consistent with the standard result that the force on a
charge is given by the charge times the electric field.

Now we recognize the material polarization P; and use Eq. (5)
to replace D; wherever it appears in Eq. (19) to obtain

dw d 1 d 1 dpP;
—=—| Zk,EEAV+—| —pvpdV+ E—
dr de),2 drJ,2 v dr

A av i
+ (0 + 04 = 6] = EiP;+ E/cPk‘Si_i)E;:|dV (23)
where
&Y = i (EE; = SEES,) (24)

is thus the Maxwell stress at the specified electric field for free
space absent any material and the second integral on the right-
hand side has been obtained from the second one on the right of
Eq. (19) by use of the first form of conservation of mass, Eq. (6).
In the derivation of Eq. (23), the fact that

dE, v, GE, v,
Kgf [EJ—L—(E,EJ—EkEkﬁl-j)—’:|dV=f [KoEi——a?j—v
v dr ox; v ot ox;

a1
+ (9—Xk EKoEiEivk dv (25)
has been used and the divergence theorem then provides
JE;, 9 (1 JE;
kKEi— + —\| zkoE;Ev; | |dV=| k,E—dV
y gt o \2 ,
1
- _Ku”EiEianvde (26)
52

The terms on the right-hand side of Eq. (26) combine to give the
first term on the right-hand side of Eq. (23). Note that in regions
of free space without material, the second and third integrals on
the right-hand side of Eq. (23) are both zero (given that the
Cauchy stress is zero there), indicating that the first integral gives
the rate of energy storage in space to permeate it with the electric
field. Thus the third integral on the right-hand side of Eq. (23) is
the rate at which work is stored or dissipated in the material, other
than kinetic energy, which is, of course, accounted for by the first
integral.

Finally, we note that Eq. (23) can be converted to a principle of
virtual work; however, the details will not be emphasized here.
Equation (23) is valid for the isothermal response of any electro-
mechanical material whether the behavior is reversible or dissipa-
tive. However, the next section will focus attention on reversible
material response.

Conservative Materials

In this section we formally introduce the first and second laws
of thermodynamics for the electromechanical situation under con-
sideration. Ultimately, we will specialize the results to reversible
material behavior, i.e., conservative materials. In conservative ma-
terials, the work done by external agencies that is not absorbed by
kinetic energy is stored in the material in the form of elastic dis-
tortion, dielectric polarization, piezoelectric response, electrostric-
tive behavior, electrostatic interactions, and any other recoverable
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energy storage mechanism that is active. The balance of energy
required by the first law of thermodynamics can be stated as
au_aw_do @
de dr dr
where U represents the stored internal energy of the material, the
electrical energy stored by free space, and the kinetic energy of
the material; dW/dr is the external work rate derived in Eq. (14),
and dQ/dr is the rate at which heat is transferred to the system.
Note that the free space in which energy is stored is not just that
occupied by the body or bodies under consideration. Material sub-
ject to electric fields couple with the surrounding aether and per-
meate it with an electrical field. Thus, the free space being con-
sidered includes any surrounding space affected by the electric
fields associated with the body or bodies. Specifically, dU/dt and
dQ/dt are written as

_d ave | Leppave & Lovsav (28)
L8 2| Sk EE. = | =Zpvuv:
dr dr Vp de ), 27" dr Vzpvlv’

d
_Q=f P"’dV—f gindS
dr v s,

where u is the internal energy per unit mass, 7 is the heat input
rate per unit mass, and §; are the components of the heat flux
vector with the positive sense directed out of the external surface
S, of the system. Note that at all points interior to the system the
heat flux vector is taken to be continuous, eliminating the possi-
bility of surfaces acting as sources of heat. Equations (23) and
(27)-(29) can be combined and must hold for any arbitrary vol-
ume yielding a local form for the first law as

and

(29)

du R av; dp; . dq;
ry = (0j+ 0 = 6} —E.P;+ EkPk(sij)_axj + Ei_dz + pF— .
(30)

The second law of thermodynamics states that the entropy pro-
duction rate must be equal to or exceed the rate of entropy input to

a region, i.e.,
d ; 5.1
—J pst?f p—rdv-f iy
dr ), v o s, 6

where s is the entropy per unit mass of the material and 6 is the
absolute temperature. Equation (31) can be manipulated by appli-
cation of the divergence theorem to the last term on the right-hand
side and then required to be valid for any arbitrary volume to yield
a local form of the second law as

(31)

ds _ pr 14 §; 00
— = -t 32
Pac™ 0 oox, @ox (32)
Then, defining ¢ as the Helmholtz free energy per unit mass, we
have
Y=u-—0s (33)

and in combination with Eq. (30)-(33), Eq. (32) can be rewritten
as

w; dp; de dy
i+ ol -6 _EP +EP.S)— +E— —ps— —p—
(0'11 Ji ji iy Kk ”)ﬁxj Car ps a pdt
g; 96
=0 (34)
0 ox;

For a conservative electro-active material it is assumed that in
general ¢ is a function of the deformation gradient, polarization,
and temperature, ie., ¥=y(F;;,P;,0). Note that for material
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points, x; designates their positions in the current configuration
and a mapping

x;=x(X;.1) (35)

associates these points at time ¢ with their positions X; in the
reference configuration [7]. The components of the deformation
gradient are given as

ox;
Fij=— 36
K, (36)
Then, using
dF; ax; dv;
Wik _ X Ui (37)
dt Xy ox
we can modify Eq. (34) to
. ay ;
[(q,-,+ ol = 6 — E;Pj+ E\P5;) - pEij] gj
oy |dp, aw]da G; 90
+|E-p— |—/—-|ps+p— | —--—=0 (38
[ p&Pi]dt [ps Pov ar om0 Y

Following the methods of Coleman and Noll [9], we postulate that
(38) must hold for every admissible process. First, consider pro-
cesses where the deformation gradient, polarization, and tempera-
ture are spatially homogeneous but arbitrary functions of time.
Such processes can be thought as being controlled by the appro-
priate applications of body forces, charge densities, and heat sup-
ply. For spatially homogeneous temperature distributions the last
term on the left-hand side of (38) vanishes. If dP;/dt and d6/dz
are taken to be zero and dv,/dx; is arbitrarily chosen, then (38) is
satisfied only if

W

o+ o —

it O = O = EiPy+ EPidy=p— = Fjy (39)
If d6/dt and dv,/ dx; are zero and dP;/dt is chosen arbitrarily, then

(38) implies

J
Ei=P_l//

oP; “40)

If dv;/ dx; and dP;/dr are zero and d6/dt is arbitrarily chosen, then
(38) yields

W

"9 “1)

S =
Finally, consider spatially homogeneous and time-independent
distributions of the deformation gradient and polarization, and
spatially inhomogeneous but time-independent distributions of
temperature. Such processes and Eq. (38) then imply the heat
conduction inequality

90,
qlﬁx-/

1

(42)

The requirements of objectivity [7] place restrictions on the
forms that the constitutive laws can take. This leads us to con-
clude that the Helmholtz free energy per unit mass at fixed tem-
perature must have the form

b=(U;,11)) (43)

where [1; are the components of the rotation invariant polarization
defined as

II,= PR, (44)

where Rj; is the orthogonal transformation arising from polar de-
composition of F;; into a pure deformation and a pure rotation [7]
as
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FijzRikUkj (45)

Finally, U;; are the components of the right stretch tensor.

Note that the choice we have made for the functional depen-
dence of ¢ in terms of a polarization measure is not the only one
possible that would satisfy objectivity. However, we find it to be
of the most convenience. In general, to satisfy the requirements of
objectivity, the Helmholtz free energy density can depend on any
measures of polarization and strain that in turn depend only on the
rotation-invariant polarization and the right stretch tensor. Since
their evaluation does not require the solution of an eigenvalue
problem, it is common to define the relevant polarization measure
as IP;=ILU;=PF); and the strain measure as &;=(UyUy;
= 8,;)12=(F;Fy;— 6,)/2. However, the form IP; for the polariza-
tion measure is somewhat convoluted since it is affected by both
electrical polarization and the stretch of the material element.
Hence, for the purposes of this work the polarization measure will
be taken as the rotation invariant polarization I1I;, which is inde-
pendent of the material stretch, and the strain measure will be
taken as the Green-Lagrange strain &;; mentioned above and re-
peated below as

€= %(Fkiij -6 (46)

Using these polarization and strain measures, we find more con-
venient forms of Egs. (39) and (40) to be

oY

E.=pR,— 47
Wy .
gjit 0’_?,'4=P(98 Filem"'BjiklPkEl"'PjEi_PkEk5ij+0'_1j\;1
Im
(48)
where
JR,,
Bjiu=F iji’:Rln (49)
The derivative of the rotation tensor is given by [10]
dRy 1
—=—[(V,u0ii = Vi)(U,,, 60— U,
ﬁFﬂ V[( mmYij lj)( nn%kl kl)
- (meRiI - Fil)(VnnRjk - ij)] (50)
with
v=Det(Vj, 5, — Vij) = Det(Uy5;; - Uyy) (51)

in which V;; is the left stretch tensor given by a polar decompo-
sition in the form [7]

Fij=VyRy; (52)

Thus

1
ﬁjiki = I_JV_/'m(Vnnémp - Vmp)(quéir - Vir)(arkﬁpl - 5rl‘$pk) (53)

Furthermore, it can be shown that [10]

BjiPiE; + PE; = BijuPrE+ PiE; (54)

and this confirms that the total true stress O'ji+0'§‘;l is symmetric as
required by conservation of angular momentum. In fact, as long as
the free energy density is objective, then the law of conservation
of angular momentum, Egs. (8) and (13), will be satisfied auto-
matically [1].

We note that Egs. (47) and (48) are together equivalent to con-
cepts developed by Landau and Lifschitz [6] who studied these
issues for infinitesimally strained isotropic elastic materials and
piezoelectric systems through the use of a free energy. We believe
that we have therefore placed these ideas into a more general
framework.
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Dielectrically Linear, Isotropic, Conservative Materials

Consider now a material in which the stored energy per unit
reference volume is the sum of an isotropic function of the defor-
mation plus a term quadratric in the polarization. Thus

b=, + x;; I, (55)
where i, depends only on the deformation and y;; is the electrical
susceptibility of the material, which is assumed to be dependent
on the strain but independent of polarization. Since the material is
assumed to be isotropic, #, and x;; will be functions of the invari-
ants of the Green-Lagrange strain or, equivalently, the right or left
stretch tensors [7]. Possible forms of interest for the elastic re-
sponse would include neo-Hookean, Mooney-Rivlin, Blatz-Ko,
and Ogden formulations [7,11-16], but allowance should be made
for compressibility of the material to ensure consistency with any
dilatancy that is assumed in association with the electrical behav-
ior. The susceptibility tensor is symmetric and must be isotropic in
the limit of zero strain so that the unstrained material is electri-
cally isotropic. Due to strain y;; can become anisotropic [6].

The electric field can now be deduced from Eq. (47) to be
1
E;= R,,X,k PRy (56)

Ko

which is thus a linear relationship between the components of
electric field and polarization modified by the effects of straining
and rotation of the material. Note that in the limit of zero strain,
this relationship is consistent with what is expected for isotropic
dielectrics since then the susceptibility is

Xij = )_?51] (57)

where Y is the isotropic susceptibility of the unstrained material.
The relationship in Eq. (56) then becomes

1
—P;
K()X

The result for stress obtained from Eq. (48) is

(9 e ) 1,
aj,-+g4,.4=ij<p Y _ ‘R —ER oE, E)F
J (981([ 2

E. =

i

(58)

K
+ KoRijk/leEmEi - EoRleImanEkE o

nYji

+ Kaﬂ/zklemeannElE + GM (59)

where

o ——FylF =~ po;

de Eim Y
has been utilized and the inverse of Eq. (56) has been used to
eliminate the polarization. In Eq. (59), the term containing the
derivatives of ¢, can be considered to be the elastic stress and the
remainder of the right-hand side of the expression can be taken to
be the electrostatic stress as in the usage of Landau and Lifschitz
[6]. However, this does not imply that the Maxwell stress and the
electrostatic stress are identical, since the Cauchy stress, 0;j, can
have a constitutive relationship that allows it to depend quadrati-
cally on the polarization independently of whatever electrical be-
havior is associated with the Maxwell stress. Because of the dif-
ficulty of measuring the Cauchy and Maxwell stresses separately,
it is probably impossible to resolve this question experimentally.
Therefore, we will focus on the elastic stress

Y,
e _ e
;i = Fyp ﬂsle il

(60)

(61)

and the electrostatic stress
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es K(l X {2
O-ji == E ijmn - R FtIEmE + KOﬁjlklemeannElE
K,
+ KoRijklleEiEm - EDRkIleanEkEn 5]1 + O'M (62)

without attempting to separately identify the Cauchy and Maxwell
stresses. Of course, the sum of the elastic and electrostatic stresses
is equal to the sum of the Cauchy and Maxwell stresses and both
sums are equal to the total true stress.

Linear, Isotropic, Conservative Materials at
Infinitesimal Strain

For illustration, now consider the case where the strain is in-
finitesimal, so that to first order in the infinitesimal strains, ejjs the
susceptibility can be written [6]

=X0;+ ﬂ ekk5 (63)

KG

where «; are constants. With terms of hlgher order in strain ne-
glected, the expression for the electric field in Eq. (56) becomes
identical to Eq. (58), which is the usual relationship for isotropic
dielectrics. When the strains are infinitesimal and higher order
terms in strain are neglected, Eq. (59) shows that the total stress is
given by

2G
0',4_/~+o‘f.;1=2Gel~j+(B— 3 )ekk5 +< ;l)EiE_i

L
- E(K + 1) EyE 6 (64)
as identified for this situation by Landau and Lifschitz [6]. In Eq.
(64), G is the shear modulus, B is the bulk modulus, and & is the
dielectric permittivity of the unstrained material such that

(65)

so that the relationship between the electric displacement and the
electric field during infinitesimal straining is given by

D; = RE; (66)

Note that, as observed by Landau and Lifschitz [6], the resulting
total stress in Eq. (64) is symmetric and therefore the conservation
of angular momentum is satisfied. Furthermore, consistent with
the usage of Landau and Lifschitz [6], the elastic stress is

K=(1+Y)«k,

. 2G
(J'I-j=2G€l'j+ B—T ekk5 (67)
and the electrostatic stress is
es -~ K 1 ~
o=k~ 5 EE;- E(K+ K2)ELE 6 (68)

However, there is no implication that the electrostatic stress and
the Maxwell stress are identical.

Conservative Materials that Remain Dielectrically
Isotropic During Straining

Now return to the general case of arbitrarily large deformations
but assume that, upon straining, the susceptibility remains isotro-

pic and thus objectivity is assured. The susceptibility will be per-
mitted to depend on the material density and thus is given by

X11=X(p)5ij (69)
Note that the material density obeys p=p,/Det(U;;), where p, is
the density of the material in the reference state. Thus the depen-
dence of the susceptibility on the density represents a contribution
to the dependence of the Helmholtz free energy on the right
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stretch tensor, as stated in Eq. (43). Given Eq. (69), Eq. (56) then
simplifies to

P;
= (70)
xoX(p)
The total true stress from Eq. (59) is then given by
1 9y, 1 1 dy
O-ij + 0‘5‘14 = Fik;EkIFﬂ + K(EIEJ - EEkEk6U> + Epd_pKoEkEkgij

(71)
where « is the possibly density-dependent dielectric permittivity
given by

k=(1+x)k, (72)

so that

D; = kE; (73)

To obtain Eq. (71), use was made of the fact that 8;;EE;=0. As
expected, the total true stress is symmetric, reflecting the fact that
the balance of angular momentum is satisfied. From Egs.
(70)—(73) it can be seen that through measurement of the elastic
response and the dielectric susceptibility, possibly a function of
density, the properties of this type of material can be fully char-
acterized. The combined true stress can then be calculated for a
given strain and electric field. When the susceptibility remains
isotropic during deformation, the electrostatic stress thus becomes

os 1 1 dx
O-ij =K EiEj_ EEkEkél] + Epd_pKoEkEkéij (74)

Now we may explore the implications of different assumptions
of how the dielectric permittivity depends on the material density.
If we take the susceptibility to be independent of the density (or
equivalently that the stored polarization energy per unit current
volume is proportional to the square of the magnitude of the po-
larization vector but insensitive to the density, see Eq. (55)), the
electrostatic stress from Eq. (74) becomes

o8 = k(EE;~ SEE,8)) (75)

a form commonly seen in the literature as an expression for the
Maxwell stress in a dielectric [6]. The body force per unit volume
associated with the electrostatic stress given in Eq. (75) is

005! OE;
— = k—E;=qE; (76)
ox; X i

J

where Egs. (2) and (73) have been used to establish the free
charge density. Thus the body force associated with this particular
electrostatic stress in this particular material is the load per unit
volume due to the electric field acting on the free charges, reflect-
ing the fact that an electric field applies a unit force on a unit
charge [6]. This would seem to be a reasonable choice as a pos-
tulate for the electrical body force and it is often seen as such in
the literature. However, there is no implication in our approach
that the electrostatic stress in Eq. (75) is the Maxwell stress, nor
that the electrical body force is the expression given in Eq. (76).
Indeed, there is no need to adopt any particular postulate for the
electrical body force and the Maxwell stress, since the total true
stress is in equilibrium with the mechanical body force whatever
the form of the electrical body force and the Maxwell stress and
this is all that is needed for a complete formulation of the behavior
of the material in response to electric field and strain. Further-
more, the electrical body force and the Maxwell stress cannot be
determined from measurements of the total true, elastic, or elec-
trostatic stress, neither in terms of their body forces nor their
interface or surface tractions.
Another possible assumption for the susceptibility is that

]
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_Px
Po

(77)

where Y is a constant. This means that the polarization energy per
unit mass of the dielectric is proportional to the square of the
dipole moment per unit mass, i.e.,

_Po (P[P

Yp= — )N\

2Zkoxi\ p/\ p
where ¢p is the polarization energy per unit mass of the material
and the term in parentheses in Eq. (78) is clearly the dipole mo-
ment per unit mass. This relationship for the stored energy of
polarization is often assumed to be the correct one for a linear,

isotropic, dielectric material [1,3]. The result for the electrostatic
stress from Eq. (74) is then

(78)

1 A
05} = KEE; - 5k, XEE 8= P;E; + 61/ (79)
This is another form that can be found in the literature [1,3] as an
expression for the Maxwell stress. The body force per unit volume
arising from this electrostatic stress in this material is given by

9o JE,

J J

where the free charge has been obtained from Egs. (2), (5), and
(73). The expression in Eq. (80), as a postulate for the electrical
body force per unit volume, has a provenance based on molecular
models for the electrical response of a lattice [3] and therefore
lends credence to Eq. (79) as an expression for the Maxwell stress
in this particular material. In this case, the body force is the effect
of the electric field acting on free charge plus the net force acting
on induced dipoles because of a gradient in the electric field. The
latter effect is due to the different force magnitude on the positive
and negative charges of the dipole because of the different electric
field acting upon them. However, as before there is no implication
in our approach that the electrostatic stress in Eq. (79) is the
Maxwell stress, nor that the electrical body force is the expression
given in Eq. (80). As we have emphasized already, there is no
need to adopt any particular postulate for the electrical body force
and the Maxwell stress.

A third possibility is that the isotropic susceptibility is inversely
proportional to p, which leads to an electrostatic stress given by

05 = K(EE; ~ EiE8,) + 5K, EEy 8= PiEj~ PyES; + 6]
(81)

The body force per unit volume from this particular expression for
the electrostatic stress in this particular material is given by

oS! oP;
— =4E - —'E; (82)
ox ox;

where, as before, the free charge has been obtained from Egs. (2),
(5), and (73). These forms, Egs. (81) and (82), as a postulate for
the Maxwell stress and the electrical body force, seem to be ab-
sent from the literature. However, they can be rationalized as giv-
ing a body force that accounts for the electric field acting on free
charges but that also provides for an effect in which the gradient
of dipole density produces a force opposite to the direction of the
gradient. The latter action can be understood as being due to the
electric field in association with a surplus of positive charges over
negative charges (or the opposite) at a given point in the material
when there is a gradient of polarization. However, as before, there
is no implication in our approach that the electrostatic stress in Eq.
(81) is the Maxwell stress, nor that the electrical body force is the
expression given in Eq. (82). As we have emphasized already,
there is no need to adopt any particular postulate for the electrical
body force and the Maxwell stress.
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Quasi-Linear Piezoelectric Materials

To illustrate results in the context of a piezoelectric material, we
write down a stored energy given by

x; 11,

1 1 p()
U="—8CijuEn— ;Hihijkejk + sibanty (83)

2p, 2K,p
where ¢ is a constant linear elasticity tensor at fixed polariza-
tion, h;j; is a constant tensor of piezoelectric coefficients, and ;;
is a constant susceptibility tensor denoting the response at zero
strain. We note that in light of Eq. (43), ¢ in Eq. (83) is objective.
The choice of the form in Eq. (83) is somewhat arbitrary in the
sense that the piezoelectric coefficients and the susceptibility ten-
sor are fixed. By making such choices, we have eliminated the
possibility that the susceptibility and the piezoelectric coefficients
can experience a change of axiality during strain. On the other
hand, in devising Eq. (83) we have utilized the notion that the
stored energy per unit mass should depend on the polarization
through the dipole moment per unit mass, an assumption that is
fairly common in the literature.
Now we use Eqgs. (47) and (48) and specialize to infinitesimal
strain and rotation to obtain piezoelectric relationships in the form

0

1
E;j=—hjej+ K_XijIPj (84)

and
(85)

Note that the specialization to infinitesimal strain and rotation
involves neglect of terms of higher order in strain and rotation.
Complete linearization of the equations would eliminate the terms
in Eq. (85) that are products of the polarization and electric field
with the electric field. Note also that since the elasticity and pi-
ezoelectric coefficient tensors in Eq. (85) are symmetric on inter-
change of the subscripts i and j, the total true stress in Eq. (85) is
symmetric, confirming that the balance of angular momentum is
satisfied. As before, there is little mileage in attempting to separate
the Cauchy and Maxwell stresses. Instead, we will identity the
first two terms on the right-hand side of Eq. (85) to comprise the
piezoelectric stress, o-fj, and the remainder to be the electrostatic
stress. Thus

M 1 ~M
O'IJ+0'” =Cijklek1_hkfjpk+ E(PIEJ_{—EIPJ) +0-ij

= cper = hiPr (86)

and
(87)

The body force per unit volume associated with this electrostatic
stress in this material can be readily obtained by taking the spatial
divergence of the expression in Eq. (87). However, the result is
not particularly revealing. In any case, as before, there is no im-
plication in our approach that the electrostatic stress in Eq. (87) is
the Maxwell stress, nor that the electrical body force is its diver-
gence. As we have emphasized already, there is no need to adopt
any particular postulate for the electrical body force and the Max-
well stress. Instead we regard the electrostatic stress tensor in Eq.
(87) simply to be an illustration of the consequences of certain
constitutive assumptions embedded in Eq. (83).

es _ 1 AM
o= 5(PE;+EP)) + Gy

Compliant Isotropic Dielectrics

Polymer dielectrics that have low shear moduli and are highly
deformable to stretch ratios of order 10 have been introduced
recently as actuator materials [5,11,16]. It is assumed that they are
isotropic before straining and Kofod [11] has had success fitting
their elastic response to a large strain, isotropic constitutive law
for incompressible deformations developed by Ogden [12]. Pel-
rine et al. [5,16] and Kofod [11] also show that the dielectric
permittivities of some of the polymers are unaffected or only
slightly affected by straining, though there is evidence [17] that at
least some polymers have susceptibilities that change significantly
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Fig. 2 A polymer dielectric actuator in the form of a slab with
planar deformable electrodes

upon elastic deformation. The assumptions of incompressibility
and insensitivity of the dielectric permittivity to straining are con-
sistent with each other but not general. Therefore, we wish to
study these highly deformable dielectrics within our formulation
but when elastic dilatation is possible and when the permittivity
depends on the strain. Ogden [14] has formulated an elasticity law
for compressible materials that has a similar structure as his in-
compressible case; this could be used in our development and,
presumably, it would model the stress-strain response of Kofod’s
[11] material well. However, the Ogden materials, whether incom-
pressible or compressible, are somewhat complicated. Therefore,
we will use a simpler elastic formulation, as we strive only to
illustrate our approach to analyzing these materials and not to
model them to a high degree of accuracy. Consequently, we will
use a compressible form of the neo-Hookean material that is a
variant of the Blatz-Ko [14,15] constitutive law. We will find that
compressibility is essential to our ability to compute meaningful
results in specific boundary value problems.

We choose also to present the results in terms of principal
stresses and stretches as developed by Ogden [12,13], who also
pointed out the great advantages of such an approach over formu-
lating the results in terms of the strain tensor. In particular, it is
directly applicable to the deformations of an actuator as shown in
Fig. 2, which is a slab of polymer dielectric between two planar
deformable electrodes [5,11,16]. For the polymer dielectric, we
use a compressible generalization of the neo-Hookean formulation
with an elastic strain energy density given by [14,15]

U,= g(mi -3/ +B(J-1InJ-1) (88)
where \; are the principal stretch ratios in the three orthogonal
principal directions of the deformation so that the ratio of volume
in the current state to volume in the reference state J=Nj\o\3
=p,/p. Note that the form presented in Eq. (88) is not a Blatz-Ko
material per se because the term containing the bulk modulus B
differs from their form [14,15]. However, our form is consistent
with Blatz-Ko usage with their parameter k£ chosen to be unity and
is used in the spirit of simplicity. Given that the principal elastic
true stresses are given by [12,13]

\; U,
of= 7’ (9)\;) (no sum on i) (89)
they become
ol =GO\T =T+ B(1-T7") (90)

Note that for polymers B/G is usually very large compared to
unity and that this effect will keep the dilatational strains very
small during deformations.

Now consider the condition of the actuator shown in Fig. 2
subject to an electric field E;=F given by the voltage difference
between the electrodes divided by the distance between the elec-
trodes in the deformed state. The thickness of the actuator is very
small compared to the in-plane dimensions so that a uniform elec-
tric field and stress state may be assumed in the dielectric and the
effect of fringing fields at the edge can be ignored. Since we
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assume that the actuator is constrained so that it does not rotate
and that gravitational loads are negligible, the rotation tensor R;;
= &;; and the actuator remains rectilinear in shape during deforma-
tion. The susceptibility is isotropic before straining and remains at
least orthotropic thereafter because of the lack of shear strain. The
electrostatic stress from Eq. (62) in all situations for this actuator
is then given by

J K,
o =- (1 + X33+ )\%—X%)—OEZ
deyy/ 2

pr (1+X33+>\2 X33) Lope (91)
822 2
‘ ﬁXaa) 0
o= 1+ N —FE
33 < X33~ 3&%2 7

with the shear components zero.

The electrodes are assumed to be very thin and highly compli-
ant, as they are in practice [5,11,16], so that they offer no con-
straint on the deformation of the dielectric. Thus, the only me-
chanical loads are the tractions 733 applied through the electrodes
and that act parallel to the x3 axis or, alternatively, the tractions
T\, or Ty, applied parallel to the plane of the electrodes. In addi-
tion, the stretching of the actuator parallel to the plane of the
electrodes may also be controlled kinematically.

In the first deformation we consider, the principal stretch ratios
N\ and \, are equal to each other and, consequently, the elastic
stresses from Eq. (85) are

1 1 1
gy =05 = G<)\3 )\2/3)\1/3> (1 - )\2)\3>

N, 1 1
0'§3=G<)\_% )\2/3)\1/3> "'B(l - )\%7\3)

with the shear components all zero. The case we will address first
is that where the principal stretch ratios A; and A, are controlled
but within the constraint of being equal. The result, deduced from
Eq. (7), that the traction T3; is balanced by the sum of the o33
components of the elastic and electrostatic stresses provides

Gl—S5-—+—=|+B{1—-—|+—E|1+ )\ =T
()\% )\%/3)\;/3 )\%)\3 2 X33~ de, 33

(93)
which, in principle, can be solved for A;. When xs3 is a function
of strain, its derivative will be a function of A3 in a manner that
can only be determined by experiment. Therefore, the order of Eq.
(93), through the dependence of the susceptibility on the strain, is
indeterminate without information from such experiments. Fur-
thermore, if the potential difference between the electrodes is con-
trolled, the electric field will be a function of N\, further compli-
cating the equation order. Rather than pursue the solution of Eq.
(93), we will consider the situation where the actuator, without
mechanical load or electric field (i.e., in short circuit), is strained
in the planar direction to a stretch ratio given by \; =)\(1) and then
an electric field applied along with blocking tractions sufficient to
maintain the stretch ratios as they were before application of the
field. The resulting through thickness strain before application of
the electric field and traction conforms to a stretch A;=\j satisfy-
ing

(92)

G( A 1 ) B(l ;>—o (94)
D2~ Py T g

and the blocking tractions required to maintain these stretch ratios
are
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A special case of this result is where all the stretch ratios are fixed
at unity. The blocking traction is then

3)(33(7\1’)\3)} (95)

Ty3= [1 +x33(\1AD) = (A\9)?
dess

- K2)E2 (96)

where the relevant value of the partial derivative of the suscepti-
bility component has been deduced from Eq. (53) and, of course,

(96) agrees with the result that can be obtained from the
theory of Landau and Lifschitz [6], since this case is also the limit
of zero infinitesimal strains.

Note that compressibility of the material is essential to our abil-
ity to calculate a meaningful result for the problem just addressed.
If the polymer were exactly incompressible, then the kinematic
relationships would become

1/~
T33=5(K =Ky

A= %% ©7)
and
A= — - (98)
(D)

Then once the stretch parallel to the electrodes of the actuator has
been established, applications of electric field and mechanical
stress are incapable of changing the through thickness strain.
Thus, actuation in the sense of thickness change for the device
becomes impossible and there is no need for a blocking traction to
suppress the actuation. All that applications of electric field and
tractions do is to modify the hydrostatic stress in the dielectric
polymer without changing the strain.

Having demonstrated that one must be careful when using an
incompressible material model, we now turn to a problem that can
be successfully and accurately assessed with a volume-preserving
constitutive law as an approximation to the true behavior when the
bulk modulus, B, is much greater than the shear modulus, G. In
this problem, the actuator is first stretched in the x, direction with
no other tractions or constraints applied and under short circuit
conditions so that E is zero. This stretch ratio is held fixed there-
after so that \,=\J and due to incompressibility at this stage

1
’/_
VAS

An electric field is then applied and simultaneously a traction 77;.
In the incompressible limit, the elastic stress is given by Eq. (90)
with J=1 and the term containing B is replaced by the negative of
a pressure p. After the electric field is switched on, the stretch
ratios must obey the relationship

N =N3= (99)

1
Mg

and the pressure is calculated from the condition that the sum of
the elastic and electrostatic stress in the o33 orientation is zero
because there is no traction applied in that direction. Thus

G|:(“ ;‘ )2 :| |:1 X X33:| ()Ez

(NS )2 dess | 2
and it follows that the balance of forces in the ¢ orientation

provides
1 1 J 1 9
G[x%— ,,2]—{1+X33+—[>\%—X33— 02—"33]},%52
(AA3) 2] denn (NN dess
(102)

=Ty
which can be solved for A, in principle to determine the degree of
actuation. As before, the solution is complicated by the fact that

)\3=

(100)
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the dependence of the dielectric permittivity on the strain (i.e., on
the stretch ratios) must be determined from experiment. Further-
more, if a fixed potential difference is applied between the elec-
trodes and a fixed load provides the traction 77, both the traction
and the electric field are functions of \; as well, further compli-
cating the solution. A simpler situation is where 77 is the block-
ing traction which resists the effect of the electric field and main-
tains the stretch ratios at the levels given in Eq. (99) that prevailed
prior to the application of the field. The result from Eq. (101) for
this blocking traction is then

T),=-

114 J
14 xa3 + [ X33 0X33

2)\; de 11 (9833

where the electric field and the traction are simple to establish
because the thickness strain of the actuator is given by Eq. (99).
The result in Eq. (103) predicts to within reasonable accuracy the
results of an experiment carried out by Kofod [11]. It is notable
that if the susceptibility is independent of strain, the traction pre-
dicted by Eq. (103) is compressive, reflecting the fact that appli-
cation of the electric field will cause the actuator to try to expand
parallel to the x; axis.

] K, E? (103)

Discussion

The formulation presented in this paper is general and valid for
materials in which the stress can be described by a local theory [7]
and for which couple stresses or a director theory of materials
response are not needed. In addition, the presentation is, we be-
lieve, free of unnecessary assumption in regard to the nature of the
electrical body force and Maxwell stress in electrostatic systems.
Instead, the expressions are presented in such a way that measur-
able behavior can be used to determine all the necessary functions
and constants to completely describe the material constitutive be-
havior for reversible response. Indeed, it is not necessary to know
the electrical body force or the Maxwell stress to obtain a usable
constitutive law. Instead, given the assumptions of the paper re-
garding the constitutive law, measurements of the elastic response
at zero electric field and of the material’s dielectric permittivities
as a function of strain will fully characterize the constitutive law.
If the assumptions of the paper are incorrect in the sense that the
constitutive law is more complex than that presented in Eq. (55),
more extensive experiments will be needed to characterize the
free energy as stated in Eq. (43), perhaps because the dielectric
response involves a nonlinear dependence of the electric displace-
ment on the electric field or that the elastic and electrostatic en-
ergy do not separate in the manner assumed in Eq. (55).

In regard to the terminology in the paper, quibbles can be
raised, e.g., concerning what we call the Cauchy stress, which
some workers regard to be what we have called the total true
stress, i.e., the sum of what we call the elastic and electrostatic
stress. However, this would be to focus on the wrong issues, be-
cause it is the formulation that is important, not the names of the
terms. In any case we would not object to instructions to rename
our entities, although we prefer our choice of names for what we
have called the Cauchy, Maxwell, elastic, and electrostatic
stresses.
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Finally, we reemphasize the comments made in the Introduction
that the formulation we have presented is desirable for use in a
modern setting where feasibility of experiments, possible applica-
tions in finite element calculations, and the need for developments
in the fracture mechanics of electromechanically loaded compo-
nents have guided our thinking. We believe that our presentation
is not only valid, but is attractive in the context of these needs. We
have focused on conservative materials. However, all of what is
developed up to and including Eq. (34) is correct for dissipative
material behavior in the electrostatic limit, such as ferroelectric
switching [18,19]. Thus, the formulation can and will be extended
to dissipative materials in due course.
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structure interaction problems. The BFEM is employed to model the infinite fluid medium,
while the structure is modeled by the finite element method (FEM). The relationship
between the fluid pressure and the fluid velocity corresponding to the scattered wave is
derived from the acoustic modeling. The BFEM is suitable for both finite and infinite
domains, and it has advantages over other numerical methods. The resulting system of

equations is symmetric and has no singularity problems. Two numerical examples are
presented to validate the accuracy and efficiency of BFEM-FEM coupling for fluid-
structure interaction problems. [DOI: 10.1115/1.1940664]

1 Introduction

With the increasing human activities in the ocean, dynamic
fluid-structure interaction (FSI) analysis has attracted more atten-
tions in the past 50 years. Since analytical solutions are difficult to
obtain for general FSI problems, numerical techniques for FSI
problems are developed.

Amongst the prevailing numerical techniques, the finite element
method (FEM) and the boundary element method (BEM) are
commonly used. Very often, the FEM is employed to model the
structure, while either the FEM or BEM is used to model the fluid
domain. In those numerical simulations, FEM-to-FEM domain
coupling procedures or FEM-to-BEM domain coupling proce-
dures are necessary. Nevertheless, both FEM-FEM and FEM-
BEM simulations exhibit some pitfalls.

When both the structure and fluid domain are bounded, FEM-
FEM simulations have been shown to be efficient and able to
yield reasonably accurate dynamic responses for FSI problems as
reported in [1-9]. In those FEM-FEM analyses, various formula-
tions were presented with regard to the acoustic fluid domain:
Lagrangian fluid finite elements formulation in [1]; a generic dis-
placement formulation in [2]; a mixed displacement-based finite
element formulation in [3]; displacement and pressure mixed for-
mulation in [4—6]; and the velocity potential formulation in [7-9].
All these formulations demonstrated their robustness in coupling
with the conventional solid structural elements. According to their
characteristics, those formulations can be classified into two major
categories, namely, the displacement-based formulations and the
potential-based formulations. In the displacement-based formula-
tions, the fluid motion is described by the nodal displacements.
The coupling responses between fluid and structure are ensured by
equating the normal displacement components along the fluid-
structure interface. This type of formulation is identical to the
displacement formulation for continuum mechanics but with zero
shear modulus at the interface. However, this pure displacement
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formulation for an inviscid fluid will exhibit spurious circulation
modes. On the other hand, the potential-based formulations can
avoid these spurious circulation modes because the fluid motion is
represented by some form of scalar potential functions. In it, both
the compatibility and the equilibrium conditions along the inter-
face are explicitly enforced.

Moreover, when the FEM is employed to model an unbounded
fluid domain, the size of the numerical model is limited and
thereby the unbounded fluid domain has to be truncated but at a
sufficiently far distance such that all major responses are not dis-
torted. It requires the domain to be stretched beyond where the
scattered waves can reach. By doing so, the effects of the scattered
waves will be implicitly taken into account and no further com-
plications will arise. However, in most practical cases, the FE
mesh discretization for such a huge fluid domain will become
prohibitively expensive in terms of computational cost. Practi-
cally, a compromised solution is to truncate the unbounded fluid
domain at a reasonable not-too-far distance away from the struc-
ture. Consequently, some scattered waves will reach the truncated
(artificial) boundary before the termination of the analysis. It re-
sults in artificial waves reflecting back into the fluid mesh and
contaminating the responses. To overcome or minimize these un-
desired wave reflections from the artificial boundary, an alterna-
tive is to put in place a kind of nonradiating boundary that is
“transparent” to the scattered waves.

In modeling a fluid domain with nonradiating boundary, many
researchers have been heralding this approach without using the
FEM. Mindlin and Bleich [10] are among the pioneer endeavors.
They developed an early-time approximation technique, namely
plane wave approximation (PWA). Successful applications of the
PWA technique for the analyses of submerged spherical and sphe-
roidal shells were reported by DiMaggio et al. [11], Hamdan and
Dowling [12], and Fan et al. [13]. Very often, the early-time re-
sponses obtained from the PWA method agree well with the exact
solution, but it is not so for the late-time responses. Geers [14]
developed an analytical method based on virtual mass approxima-
tion (VMA) of the infinite acoustic medium. The validity of VMA
was illustrated through a study of the elastic response of a cylin-
drical shell excited by a transient acoustic wave. Compared to the
results obtained from PWA, the VMA results demonstrated its
superior performance, in particular the late-time behaviors and the
low-frequency response. By superimposing PWA and VMA, Ran-
let et al. [15] developed the doubly asymptotic approximation
(DAA), which was used to model the infinite fluid medium, while
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modal analysis was employed for the structure. The DAA method
was proved to be accurate to model both early- and late-time
behavior. Zilliacus [16] used the DAA method to analyze the re-
sponse of a submerged fluid-filled cylinder subjected to an inci-
dent plane step wave. It is worth noting that, in the DAA formu-
lation, the mass matrix for the fluid media is fully populated.
More comprehensive reviews of the nonradiation boundary can be
found in [17].

In solving the general FSI problems, the exact or analytical
nonradiating boundary is difficult to implement. With the emer-
gence of BEM which has been gradually recognized to have ad-
vantages in modeling infinite domain, FEM-BEM coupling proce-
dures were developed. Estorff and Antes [18], Czygan and Estorff
[19], and Yu et al. [20] demonstrated the advantages of using
FEM-BEM procedures for FSI problems. In their numerical simu-
lations, no artificial boundaries or wave reflections were present.
Moreover, the FEM-BEM procedures have computational advan-
tages derived from its BEM formulation, which reduces the spatial
dimension by one. However, it inherited the disadvantages of
BEM which demands for prerequisite fundamental solutions,
which can be very complicated or may not be available. Further-
more, it leads to asymmetric coefficient matrices in its formula-
tion. Not only does it increase the requirement for memory stor-
age, but it also compromises (if not nullifies) its other
computational efficiency.

Recently, Wolf and Song developed the boundary finite element
method (BFEM) [21-23], which was based on the geometry simi-
larity and finite element cell concept [24]. Contrary to the domain-
based methods, the BFEM formulation needs discretization only
along the boundary. Therefore, it is suitable for both finite and
infinite domains. In addition, the BFEM formulation leads to sym-
metric matrices and encounters no singularity problem, which of-
ten emerges in the BEM. Wolf and Song [21-23] successfully
applied the BFEM to solve some infinite soil-structure interaction
problems and also some bounded solid problems. They demon-
strated that the BFEM is accurate for both bounded and un-
bounded domains.

In this paper, the BFEM is applied to model the acoustic prob-
lems in an infinite fluid medium. Through coupling of BFEM-
FEM procedures, the dynamic response of a submerged cylinder
is analyzed. In comparison with the PWA, VMA, and DAA, the
present formulation using the BFEM does not impose any restric-
tion on the structure and the incident wave as well. Hence, it is
applicable for both early- and late-time response analyses. In com-
parison with the FEM-FEM and FEM-BEM coupling procedures,
the present formulation has the advantages that no artificial
boundaries are needed, no singularity is encountered, no asym-
metric matrix appears, and no fundamental solution is required.
The effectiveness of the coupling BFEM-FEM procedure will be
shown through numerical examples.

2 BFEM-FEM Coupling Formulation

In the current study, the BFEM is used to model the unbounded
acoustic fluid medium, while the FEM is used to model the struc-
ture.

2.1 FEM Model for the Structure. In modeling the struc-
ture, the mass matrix M, the damping matrix C, and the stiffness
matrix K can be treated in the standard manner according to the
FE discretization procedures. For 2D thin hollow cylindrical prob-
lems, simple two-node beam elements are used.

2.2 BFEM Model for the Unbounded Acoustic Fluid
Medium

2.2.1 Acoustic Approximation. When a structure submerged in
an unbounded fluid medium is subjected to incident waves, the
major concern is the integrity of the structure, in particular its
strength adequacy against the dynamic pressure acting on the
structural surface (wet surface). To begin, the total fluid pressure
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and velocity along the wet surface may be considered of compos-
ing two components: a free-field component and a scattered com-
ponent [13]:

Ping =P+ Psc (1)

Ving= Vg + Ve (2)

where p;,r and v;,, are the total fluid pressure and normal velocity
along the wet surface, ps and vy are the corresponding compo-
nent fluid pressure and normal velocity but are caused by the
incident wave in the absence of the structure (usually referred as
the free-field response), and p,. and v,. are the corresponding
component fluid pressure and normal velocity corresponding to
the scattered wave, which are the difference between the total and
free-field solutions. The relationship between p,. and v, is de-
scribed in the next section. The fluid medium is assumed to have
a linear constitutive relationship, which excludes the effect due to
cavitation, and thereby the free-field pressure and velocities will
be the same as the incident waves, i.e.,

pff= Pinc (361)

V= Vine (3b)
where p,,. and v, are the fluid pressure along the wet surface and
the corresponding normal velocity caused by the incident wave.

2.2.2  Pressure-Velocity Relationship for the Scattered Wave.
In PWA approximation, the pressure-velocity relationship corre-
sponding to scattered wave can be described as

pSC = pCVSL‘ (4“)
While in the DAA, the relationship can be expressed as
L. : -1
p_c(me— Py) =M AP —Pyy) = 25— Ay (4b)

where an over-dot denotes differentiation with respect to time,
M~ is the inverse of the fluid-added mass matrix, A denotes the
diagonal matrix which converts diagonal pressures to forces, and
a;,5, ay denotes the accelerations on the wet surface. p and ¢
denote fluid density and wave speed in fluid, respectively. In the
current study, another form of the relationship based on the BFEM
and acoustic approximation is developed and described in detail in
the next section.

2.2.3 BFEM Formulation for the Scattered Wave

a. Basic description. Basically, the BFEM describes the dy-
namic behavior of an unbounded medium through a dynamic stiff-
ness (or mass) matrix in the frequency domain relating the dis-
placement (or potential) amplitudes in the degrees of freedom on
the boundary to the corresponding force (or velocity) amplitudes.
By discretizing the domain into sectors radiating from a single
center (namely scale center), the geometry of the sectors can be
conveniently described in a transformed coordinate system (in
which one ordinate radiates outward from the scale center, while
others run along the boundary curve/surface). More precisely, the
unbounded medium lies in a semi-infinite domain (see Fig. 1(a)).
Along the radial direction, the near side is bounded while the far
side is unbounded. The derivation of the dynamic stiffness/mass
matrix is based on a “cloning” technique, in which the small dif-
ferential (w) between the two similar semi-bounded sectors (see
Fig. 1(b)) is taken to the analytical limit, zero. Consider the in-
finitesimal finite-element cell i-j-i’-j" (see Fig. 1(b)) which lies on
the boundary of the semi-infinite fluid domain. Note that the near
face i-j is parallel to its cloned surface i’-j’, and the two side
faces O; and O; are both originated from the scale center O. The
governing equation relating the potential and the velocity can be
written as
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Fig. 1 (a) Sectorial discretization of an unbounded domain
and (b) a typical BEFM element with differential width w lying
on the boundary of a semi-infinite domain

Vsc(l)zf M*(1 - D@(7)dr (5)
0

where ¢(7) denotes a velocity potential vector composed of nodal
velocity potential ¢(r) for scattered wave on the wet surface,
M™(¢) denotes the mass matrix of the unbounded fluid medium,
and (¢) denotes the second derivative of ¢(r) with respect to
time. Note that in Eq. (5), the scattered velocity V. and the ve-
locity potential ¢(z) along the wet surface are variables. The ma-
trix M*(7) depends only on the geometry of the wet surface and is
independent of the dynamic response of the structure and the
fluid. Hence, it can be obtained before solving the dynamic re-
sponse equation. Wolf and Song [21-23] showed the detail deri-
vation of the dynamic mass matrix and no duplication is given
here. In brief, the first step is to establish the integral form of the
governing equation in frequency domain, and then, by taking the
differential width w as the analytical limit to zero, it yields a
consistent infinitesimal finite-element cell (IFEC) equation in fre-
quency domain. Appling the inverse Fourier transformation to this
frequency equation leads to an equivalent IFEC equation in time
domain. Subsequently, the mass matrix M*(7) can be obtained by
solving the IFEC equation in time domain. (More recently, the
same equation was successfully derived using different ap-
proaches by Song and Wolf [25] and Deeks and Wolf [26], respec-
tively.) The scattered wave along the wet surface V.(7) in Eq. (5)
can be discretized through conventional finite element technique,
ie.,

V()= f Ny, (£)dl 6)
e T

where v, denotes the velocity of the scattered wave normal to the
wet surface; I denotes the wet surface; N f is the shape function
for the fluid element; and 3, denotes assemblage of all fluid ele-
ments along the wet surface.

Journal of Applied Mechanics

b. Formulation for the scattered wave. Now, consider the tem-
poral discretization of Eq. (5). Within each time step Az, the mass
M™(z) is assumed constant. Hence, Eq. (5) can be rewritten as

n jAr
V. (nAn) = 2 M[(n—j + 1)A]
j=1 (-1)At

o(1)dt

n

=2 M*(n—j+ Dl

J=1

(7a)

at the nth time step (t=nAt). It can be written in a simpler index
form as follows:

n

Vi= 2 M, (- 1)

J=1

where Vi =V (nAr), M, =M*[(n—j+1)Ar], and ¢;= ¢|;,.
Rearranging Eq. (7b) to make M7 ¢, appeared on the left-hand

side, we have

(7b)

n—1

Mg, =Vi- 2, M, —M,_)¢;+ M, ¢, (7¢)
j=1
Given the following initial conditions,
©(0)=0 (8a)
@(0)=0 (8b)
substituting p,.=—p¢ and Eq. (8b) into Eq. (7¢) yields
n—1
MTP?( == pV’;c - 2 (M:—jﬂ - Mrozo—j)p{v.c (9)
j=1

where pl =—p¢,, p,. denotes the fluid pressure corresponding to
the scattered wave, and p/ . =p,.(jAr). Note that Eq. (9) describes
the relationship between the pressure p,. and the corresponding
normal velocity v..

2.3 BFEM-FEM Coupling. The FEM formulation for the
structure can be written as

Ma+Cv+Kd=F,,+F,;, (10)

where F,,, is the sum of body and traction forces; F;,, is the force
derived from the unbounded fluid medium; M, C, and K are re-
spectively the mass, damping, and stiffness matrices derived from
the structure; and a, v, and d denote the structure’s acceleration,
velocity, and displacement vectors, respectively. The derivation of
Eq. (10) can be obtained following the standard FE procedures.
What follows will elaborate on the derivation of the last term in
Eq. (10).

By virtue of the principle of virtual work, the nodal force F,;
on the wet surface can be expressed in terms of the shape function
N for the structure and the total pressure (=p,.+py) as follows:

Fr=- f N (pg+ pydl’ == J N'N,p,dl’ - f N'pdl
T r T

=_F.V(,'_Fff (ll)

where I' denotes the wet surface, Fp=/ rNTpfde and F,.
=f rNTNppM.dF. Note that N is the shape function for the struc-
tural element, while the shape function for scattered wave can be
different, say N,, ie.,

Pse= Nppsv (12)

By substituting Eq. (11) into Eq. (10), the governing dynamic
equation for the structure-infinite fluid system can be obtained,
ie.,
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Ma+Cv+Kd=-F,—F +F,, (13)

In Eq. (13), the first term F on the right-hand side is a function
of the incident wave py. It can be evaluated easily. What follows
are the details for deriving the second term F. on the right-hand
side.

Consider the conditions along the wet surface. Two conditions
should be enforced. First, kinematic continuity across the wet sur-
face requires the normal velocity of the structure to be identical to
that of the fluid, i.e.,

(14a)

Second, the corresponding dynamic compatibility demands the
compressive traction on the structural surface to be equal to the
fluid pressure, i.e.,

v inf = Uy

P == Dinf (14b)

Substituting Eq. (14a) into Eq. (2), and then the result into Eq. (6)
and subsequently into Eq. (9) leads to

n-1

pr,slc == PE J Nf{vn(t) - Uff(l)]dr - E (M;Q—jn - M:—j)pin
e T Jj=1

(15)

Note that once py. is determined, the second term F,. on the
right-hand side of Eq. (13) can be obtained.

Now, discretize Eq. (13) in time domain using Newmark’s
time-integration scheme. We have

1 1)
Ki—M+—CC dt+At
( aAP alAt )
1 1
+Ar AT +Ar Ly ——y!
St e AR M| ——d s ——v 4 [ —
ext If 5 [amz aht’ <2a

—l)a’]
o o 5
+C[ d’+(——1)v’+<——l)Ata‘]
aAt o 2a

where ""A'F = [N'N p"4dl’, a=025, and 6=0.5. Assume
nAr=t+At. Hence, Eq. (15) can be rewritten as

(16)

n—1

Mipl=-p>, f N[vh(1) = v (0)]dT = 2, (M, - M;_)pl,
e T Jj=1

(17)

in which the velocity v’ of the current time step is approxi-

mately set equal to the velocity v! of the previous time step.
However, in some cases, it is desirable to include that term into
the global iteration scheme, i.e.,

1 6 .
K+——M+——C |**d/
( aAr?  alt >

— r+AtF _ t+ArF7"f_ HA[Fsc(HAIV‘L_I _ r+Arvﬂ_)

ext

M ! d L, < ! 1)’

+ +—v+(—-1]a
alf alAt 2a

o o o
+C[—’d+<——1)‘v+<——l>At’a] (18)
alAt a 2a

where j denotes the jth iteration within a time step. The term v ff(t)
can be obtained via other analytical solutions. For example, in
shock-wave analysis, Lamb [27] gives the following explicit ex-
pression for the incident fluid pressure along the wet surface (see
Fig. 8):
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Fig. 2 A cylindrical cavity subjected to a suddenly applied
acceleration

R—-x R—rcosy
pinc(xvt)=p0H<l_T> =P0H<f—f) (19)

where H is a Heaviside step function, and p is the magnitude of
the pressure at wave front. r, 7, and R are as shown in Fig. 8. The
incident fluid radial velocity is

Vg=U,=— Bine o5 % (20)
i oc

3 Numerical Examples

To validate the present BFEM formulation and the pressure-
velocity relationship corresponding to scattered wave based on the
BFEM, three 2D cases for submerged structures subjected to in-
ternal pressures or external shock loading are considered.

3.1 A Cylindrical Cavity Subjected to a Suddenly Applied
Acceleration. Figure 2 shows a cylindrical cavity of radius R in
an infinite fluid medium. At =0, boundary acceleration « is sud-
denly applied and then kept constant until the end of the analysis.
The objective of this analysis is to check the accuracy of the
“mass” matrix M*(¢) for the infinite fluid medium. The surround-
ing fluid medium is modeled by the BFEM using 8 or 32 ele-
ments. The results are plotted in Fig. 3. The time axis is normal-
ized with respect to R/c, while the pressure axis is normalized
with respect to paR. The same problem was considered by Yu et
al. [28] using the FEM-BEM coupling procedures. The FEM-
BEM and standard BEM results are also plotted in Fig. 3 and
compared with the current result. From Fig. 3, one can see that the
8-element results are equal to the 32-element results, and both are
almost identical to the FEM-BEM and BEM results. It shows the
efficiency and accuracy of the present formulation.

— - Standard BEM e FEMIBEM
° ct/R
£
paR
r—- 1= Y]
Elemenis
21 32 BFEM
Elem ents
-3 4
'4 T . i Ay,
-5 T
] 10 20 30 40

Fig. 3 Pressure of the cavity boundary
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= long circular
= cylinder

Fig. 4 Geometry of a long cylindrical shell subjected to an
internal pressure

3.2 Submerged Long Cylindrical Shell Subjected to Inter-
nal Pressure. Consider a thin, elastic, and infinitely long cylindri-
cal shell, submerged in water. It is subjected to a suddenly applied
uniform outward pressure (see Figs. 4 and 5). A ramp for a very
short period (0.5X 107 s) is put in place in order to avoid nu-
merical difficulties. The mean radius of the cylinder is R=0.2 m
and the thickness of the wall is #=0.006 m. The material proper-
ties for the steel cylinder are Young’s modulus E ;=210
X 10° kN/m?, density p,=7.8 X 10° kg/m?, and Poisson ratio »
=0.3. The density of fluid is p=1.0X 10> kg/m? and the sound
speed in fluid ¢=1500 m/s.

This problem is a simple 2D axisymmetric problem. The steel
cylindrical shell is discretized into 16 two-node beam elements.
Along the wet surface, the same discretization mesh is applied to
the fluid boundary. The 16 BFEM elements match the 16 struc-
tural beam elements side by side (see Fig. 6). In the analysis, the
time step is set to 0.013333 ms. The results of the dynamic re-
sponse are shown in Fig. 7, which shows the time history of the
outward displacement (positive). The displacement is normalized
with respect to the corresponding static displacement d, at mid-
surface (R=0.2 m), i.e.,

__RP, ((1+V)R§
E(RZ-R)\ R

where R;,R, are the internal and external radii of the cylindrical
shell, respectively. The analytical results based on 1D plane-wave
approximation (PWA) are plotted in Fig. 7 for comparison. One
can see from Fig. 7 that the present results are in good accord with
the PWA results, which were obtained by solving a second-order
differential equation at early time. Note that the PWA approach
can only yield relatively accurate results for early time.

s 1)

+(1 +V)R)

\ 4

0.5x10™ time

Fig. 5 Loading conditions for a cylindrical shell
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16 two-node structural
beam elements

16 BFEM clements along /\

the fluid boundary

Fig. 6 Matching discretization meshes for the cylinder and the
fluid boundary

3.3 Submerged Long Cylindrical Shell Subjected to Plane
Wave. Consider an elastic, infinitely long, cylindrical shell sub-
jected to a step plane acoustic wave. The geometry of the cylin-
drical shell is shown in Fig. 8. This study is to check the accuracy
of the present BFEM formulation against the benchmark solu-
tions. The geometric and material properties of the cylindrical
shell and the surrounding fluid medium are thickness of cylindri-
cal wall #=0.006 m, mean radius of cylindrical wall R=0.2 m,
density of steel cylindrical wall p,=7.8X 103 kg/m>, Young’s
modulus of the steel cylindrical wall E;=210 X 10° kN/m?, Pois-
son ratio v=0.3, density of fluid p=1.0X 10> kg/m?3, and sound

£
e : . :
o ’
s H i :
S T S
: ' : i —withfiud around the
g 06 1fF--—-3 mo e R At structure{BFE M)
g ' : ; —— analytical soluiion
E 04 4f------ dmeemenes Foenoaee mmnmees based onPWA
3 A
DR SR N -
& ' ' i
2 ' : :

0 i : i

0 00005 0001 00015 0.002
Time (sec)

Fig. 7 Dynamic response of a cylindrical shell

y incident wave front

Fig. 8 Geometry of an infinite cylinder
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Fig. 9 Radial velocity of a cylinder

speed in fluid: ¢=1500 m/s.

The wall of the shell is discretized into 32 two-node beam
elements, while the fluid boundary is matched by 32 BFEM ele-
ments (in the similar manner as in Fig. 6). The time step chosen
for the analysis is 0.002667 ms. The magnitude of the incident
pressure wave impinging on the structure is taken to be equal to
pc?. The same problem was investigated by Huang [29] and re-
ported by Zilliacus [16], who obtained the velocity history using
an analytical approach. The same problem was also analyzed by
Fan et al. [13], who modeled the shell using 2 X 12 nine-node
spline shell elements and modeled the fluid using the plane wave
approximation. Plane-strain conditions were imposed along the
axis of the cylinder. Recently, Yu et al. [20] also analyzed the
same problem using the BEM-FEM coupling technique.

Results obtained from the present BFEM formulation are com-
pared with solutions by others. Figure 9 shows the dimensionless
radial velocity history at different locations (6=0°,90°,180°).
The velocity is normalized with respect to sound speed ¢, while
the time is normalized with respect to R/c. From Fig. 9, one can
see that the present results are in good accord in all time with
analytical solution [28], and also in good agreement in early time
with PWA solution, which is known to be relatively accurate in
early time. On the other hand, the FEM-BEM results are also in
fairly good agreement but exhibit random undulations around the
analytical solution, particularly during late time, and the peak
value is delayed. It demonstrates that the present BFEM formula-
tion can yield more accurate results than the PWA and the BEM,
in particular at late time. Note that the true velocities at 6
=0°,180° should approach 1.377 at late time [28]. From Fig. 9,
one can see that the BFEM results approach that true value of
1.377 at late time. Compared to the DAA results obtained by
Zilliacus [16] (not shown in Fig. 9 for clarity), BFEM results are
closer to the analytical solution and exhibit more subdued oscil-
lations. Note that the results shown in Fig. 9 are obtained using
the iterative Newmark scheme (Eq. (18)), which has iterations
within each time step. The effects of using the Newmark scheme
without iterations are also studied. The results shown in Fig. 10
suggest that the noniterative Newmark scheme leads to slightly
inferior results. In order to study the convergence of the current
BFEM formulation, three different BFEM meshes (comprising 8,
16, or 32 elements) are used to represent the fluid boundary. The
time step is set to 0.01333 ms in all analyses. The results are
shown in Fig. 11. One can see that except for the 8-element re-
sults, the 16- and 32-element results are nearly the same as the
analytical solution. The poorer 8-element results are not unex-
pected because the velocity variations around the cylinder are ex-
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pected to be more refined than 8 representative sectors. Neverthe-
less, the efficiency of the BFEM formulation is clearly
demonstrated by using a fairly coarse 16-element mesh.

4 Conclusion

This paper presented the boundary finite element method
(BFEM) formulation for acoustic fluid-structure interaction (FSI)
problems. In the process of incorporating the acoustic effect, the
authors developed the velocity-pressure relationship for the scat-
tered wave. This relationship enables the extended applications of
BFEM in solving the FSI problems. The formulation was verified
through checking against benchmark solution—a submerged infi-
nite long cylindrical shell subjected to step incident wave. The
results show that the present formulation is able to yield more
accurate solution than many prevailing numerical results (such as
BEM, PWA solution). In a nutshell, the BFEM formulation is
shown to be useful and efficient in solving unbounded fluid-
structure interaction problems. It can represent accurately the un-
bounded fluid medium.

Comparison between two schemes

o Huang's
results
(analvtica)

—No lteration
] (32
elements,
time step:

velocy

01)

—iterstion (32
elements,
time step:
0.1)

Time

Fig. 10 Comparison of results obtained from two Newmark
schemes
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Fig. 11 Convergence studies using 8, 16, and 32 elements
Nomenclature

a = structural accelerations velocity vector
a;,, = total accelerations vector on wet surface
ay = acceleration vector for incident wave
A = converting matrix
¢ = sound wave speed in fluid
C = structural damping matrix
d, = structural displacement at mean radius
d = structural displacement vector
F,,, = body or traction force vector
F;,; = force vector for unbounded fluid medium
Fy = force vector for incident wave
F,. = force vector for scattered wave
nodal number
= nodal number; jth time step; jth iteration
structural stiffness matrix
structural mass matrix
M” = dynamic mass matrix for unbounded fluid
medium
M-! = inverse of fluid-added mass matrix
n = nth time step
N = shape function for structure element
N; = shape function for fluid element
= interpolation function for scattered wave
pressure
O = scalar center
p = fluid pressure on wet surface
DPinc = fluid pressure on wet surface caused by inci-
dent wave
Pin. = fluid pressure vector caused by incident wave
pins = total fluid pressure on wet surface
Piny = total fluid pressure vector
pyr = fluid pressure on wet surface caused by free-
field incident wave
pyr = fluid pressure vector caused by free-field inci-
dent wave
pse = fluid pressure on wet surface caused by scat-
tered wave
pPs. = fluid pressure vector caused by scattered wave

g Fe, w8
Il

r = radial coordinate
R = mean radius of cylindrical shell
R; = radius of inner surface of cylindrical shell
R, = radius of outer surface of cylindrical shell
t = time variable

At = time increment
v = structural velocity vector
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Vi, = normal velocity vector on wet surface caused
by incident wave

Uy = total normal velocity at one point on wet
surface

Viyr = total normal velocity vector on wet surface

vy = normal velocity on wet surface caused by free-
field incident wave

vy = normal velocity vector on wet surface caused
by free-field incident wave

v, = normal velocity of structure

v, = normal velocity on wet surface caused by inci-

dent wave

v, = normal velocity on wet surface caused by scat-
tered wave

v,. = normal velocity vector on wet surface caused
by scattered wave

V,. = efficient normal velocity vector for scattered

wave

= width of scalar finite element cell

= coefficient in Newmark scheme

= coefficient in Newmark scheme

= velocity potential

nodal velocity potential vector

= measure of angle

= measure of angle

= fluid density

= wet surface

assemblage of finite elements

o R B S o, =
Il

M
Il
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Strength Analyses of Sandwich
Pipes for Ultra Deepwaters

Design requirements for pipelines regarding both ultimate strength and flow assurance in
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ultra deepwater scenarios motivated the development of a new sandwich pipe which is

able to combine high structural and thermal insulation properties. In this concept, the
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annulus is filled with low cost materials with adequate thermal insulation properties and
good mechanical resistance. The aim of this research work is to perform small-scale

laboratorial tests and to develop a finite element model to evaluate the structural per-
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formance of such sandwich pipes with two different options of core material. After cali-
brated in view of the experimental results, a three-dimensional finite element model
incorporating nonlinear geometric and material behavior is employed to perform
strength analyses of sandwich pipes under combined external pressure and longitudinal

bending. Ultimate strength envelopes for sandwich pipes are compared with those gen-
erated for single-wall steel pipes with equivalent collapse pressures. The study shows that
sandwich pipe systems with either cement or polypropylene cores are feasible options for
ultra deepwater applications. [DOI: 10.1115/1.1940667]

Introduction

One of the challenges that the offshore oil industry faces as it
moves to ultra deepwater is to design well-insulated pipelines and
risers capable to withstand high internal and ambient external
pressures. Pipe-in-pipe systems have been lately proposed (Fig. 1)
as viable solutions to such problems [1-3]. They consist of two
concentric metal pipes in which the annulus is either filled with a
nonstructural insulating material or is used to carry water for well
injection, umbilical cables, etc. Usually, internal and external
pipes are designed independently against failure under internal
and external pressures, respectively, combined with installation
loads, mainly longitudinal bending. The factors governing the col-
lapse and propagation of buckles in single pipes and pipe-in-pipe
systems under external pressure have been extensively studied in
the past so that nowadays, deepwater pipes can be safely designed
[4-10]. Furthermore, a significant body of work for the design of
submarine pipelines under combined external pressure and bend-
ing exists in the literature [11-16].

The concept presented in this paper aims at combining struc-
tural strength and thermal insulation in an optimized sandwich
pipe with three layers, which are able to work together to resist
combined high external pressure and bending loads, typical of
installation processes of pipelines in ultra deepwaters.

Different types of ceramic or polymeric materials have been
considered to fill the annulus space of the sandwich pipe. The
selected material must provide good insulation and high compres-
sive strength. Because of their wide availability and relatively low
cost, cement and polypropylene were considered as core materials
in this paper.

Laboratory tests of small-scale sandwich pipes under external
pressure are initially described along with the nonlinear finite el-
ement model which is used to analyze the problem. After being
carefully measured, small-scale sandwich pipes with two different
geometries and core materials (cement and polypropylene) are
tested under hydrostatic external pressure until collapse. The tests

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the Applied Mechanics Division, December 1, 2003; final
revision, October 26, 2004. Associate Editor: S. Govindjee. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied
Mechanics, Department of Mechanical and Environmental Engineering, University
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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are performed quasi-statically in an approximate volume-control
scheme inside a pressure vessel. The experimental results are then
compared with the calculated collapse pressures obtained by
simulating numerically the physical experiments.

Finally, the structural performance of full scale sandwich pipes
is studied through the numerical evaluation of the ultimate
strength of different geometries under combined external pressure
and longitudinal bending. The ultimate strength envelopes then
generated are used to compare the structural performance of dif-
ferent geometries of sandwich pipes under combined loading with
single-wall steel pipes with equivalent collapse pressures.

Experiments

The tubes used to manufacture the small-scale specimens were
cut out of 6 m long aluminum tubes. The nomenclature used
henceforth to identify the various specimens is given below:

PIP.XX.YY.ZZ where

XX = core material (Ml=cement or M2
=polypropylene);

YY = geometric parameter identifier (G1 or G2);

77 = model string.

The total length of the specimens was kept equal to 1000 mm.
The main measured geometric parameters of the individual speci-
mens tested are listed in Table 1. The outer diameters (D) and wall
thickness () represent the average values of sets of measurements
made for outer and inner tubes. The variable =, is the wall thick-
ness eccentricity measured at the ends of these tubes and A, is the
maximum value of initial ovality. They are defined as follows:

o lax = b
=,= max min (1)
tmax + tmin
and
Dmax — Dm’n
A,= - ()
Dmax + Dmin

During the manufacturing process, inner and outer tubes were
held in place by two centralizing steel plugs at each end. They
were assembled in a way that the maximum and minimum diam-
eter directions of the transverse sections with the biggest ovality
were approximately coincident. Two different manufacturing pro-
cesses were used to fill the annular space depending on the mate-
rial (cement or polypropylene). In both cases, the adopted proce-
dure was such to minimize bubbles and cracks in the annulus
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Fig. 1

Sandwich pipe geometry

material and contact surfaces, and to provide a good adherence
between layers.

The experimental setup used for cement injection is shown in
Fig. 2. After mixing, the cement paste is poured in a reservoir
sealed at the top by a piston that is driven by a hydraulic actuator.
The apparatus is mounted on a compression frame, as indicated in
the figure. The piston is then moved slowly, forcing the cement
mix to flow from the reservoir into the annular space through the

Table 1 Main geometric parameters of test specimens.
Specimen Tube D (mm) D/t A, (%) B, (%)
PIPM1.G1.101 Inner 49.15 30.34 0.225 4.172
Outer 74.97 46.28 0.629 5.666
PIPM1.G1.102 Inner 50.36 30.90 0.120 1.534
Outer 75.92 46.01 0.266 3.625
PIPM1.G2.101 Inner 50.76 30.21 0.205 3.650
Outer 62.16 42.29 1.161 1.958
PIP.M1.G2.102 Inner 50.73 30.38 0.260 5.090
Outer 62.28 42.37 0.698 1.694
PIPM2.G1.102 Inner 49.64 29.37 0.456 4451
Outer 75.40 46.54 0.301 5.264
PIPM2.G1.103 Inner 49.76 30.72 0.186 3.887
Outer 75.19 46.41 0.255 5.590
PIP.M2.G2.101 Inner 49.94 29.55 0.364 4451
Outer 62.10 42.53 0.801 1.690
PIP.M2.G2.102 Inner 50.03 29.60 0.547 4.451
Outer 62.40 41.88 0.552 2.503

centralizer ¢ vent

frama.

' 9
inner pipe —— |
outer pipe | | actuator

piston —
cement-—
reservor—
end plug
vibratory - "
base
—s

Fig. 2 Experimental setup for cement injection
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Fig. 3 Polypropylene specimen

lower centralizer. While the mixture is pumped, the assembly rests
on a vibratory base and the air confined in the annulus is expelled
through vents located at the top centralizer.

For the polypropylene specimens, polypropylene tubes were
machined so as to fill in the annular space with a 0.5 mm radial
tolerance. First the polypropylene tube is mounted on the inner
tube and then slipped inside the outer tube (Fig. 3). The tubes are
bounded together by an epoxy resin so to provide a good adher-
ence between layers. Although it may not be feasible for large-
scale production of full-scale specimens, this procedure proved to
be very cost effective in the manufacturing of the specimens used
in this experimental program.

Test coupons were cut in the longitudinal direction of each tube
and tested in a conventional servo-hydraulic machine at a strain
rate of approximately 107 s~!. Figure 4 shows a typical engineer-
ing stress-strain curve obtained from such tests. The main mea-
sured material properties of the tubes are given in Table 2, where
E is the Young's modulus, o, is the 0.2% offset yield stress, and
o, is the ultimate stress. The procedure used to characterize the
behavior of the cement under tension and compression followed
the guidelines suggested by the Committee on Standardization of
Laboratory and Field Tests (1975). Several cylindrical test speci-
mens were made using the same paste injected in the sandwich
pipe specimens. The average engineering stress-strain curve of all
uniaxial compression tests is presented in Fig. 5. Typically, the
ultimate tensile stress was approximately 10% of the correspon-

250

AL2321

a 2 4 B B 10
g (%)

Fig. 4 Engineering stress-strain curve of aluminum tubes
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Table 2 Aluminum pipe mechanical properties

Table 4 Polypropylene average parameters

Specimen Tube E (GPa) o, (MPa) o, (MPa) Rod Test o, (MPa) g, (%)
PIPM1.G1.I01 Inner 66.810 199.79 225.62 2 Tension 33.48 8.48
Outer 61.967 200.93 223.40 3 Tension 35.41 8.67
PIPM1.G1.102 Inner 62.635 195.20 216.73 5 Tension 34.31 8.88
Outer 61.507 192.10 213.36 6 Tension 34.16 8.51
PIPM1.G2.101 Inner 64.447 180.71 205.43 Average Tension 34.33 8.64
Outer 63.130 141.57 171.27
PIP.M1.G2.102 Inner 64.447 180.71 205.43 2 Compression 43.40 16.64
Outer 63.130 141.57 171.27 3 Compression 50.11 21.41
PIP.M2.G1.102 Inner 63.349 186.82 214.35 5 Compression 46.04 20.19
Outer 64.909 206.52 230.97 6 Compression 44.38 17.72
PIP.M2.G1.103 Inner 63.425 194.37 215.19 Average Compression 45.98 18.99
Outer 64.909 206.52 230.97
PIPM2.G2.101 Inner 63.349 186.82 214.35
Outer 63.130 141.57 171.27
PIP.M2.G2.102 Inner 63.349 186.82 214.35
Outer 64.975 160.37 190.21

dent value in compression. Table 3 lists the main cement param-
eters obtained from both sets of tests. Polypropylene specimens
and test procedures followed the specifications given by ASTM
codes D638M-91 and D695-91. In general, three tensile and three
compression test specimens were machined from the rods used to
fabricate the polypropylene tubes. The material parameters of the
individual rods are given in Table 4, along with the overall aver-
age parameters. The correspondent engineering tensile stress-
strain curve is shown in Fig. 6. The specimens were tested under
hydrostatic pressure in a 380 mm internal diameter, 5 m long
pressure vessel with a pressure capacity of 50 MPa. The vessel is
completely filled and pressurized with water using a positive dis-
placement pump. The pressure is monitored by an electrical pres-
sure transducer and by analog pressure gages connected to the
pressurizing line. Four strain gages are mounted in the hoop di-
rection at the mid-section of the specimens. The gages and con-
necting wires are insulated with a compliant coating.

Figure 7 shows a typical set of data from the four strain gages.
The strains measured at the different points are very similar in the
beginning of the test, when membrane strains are predominant.
After an initial stiff response, bending strains caused by the in-

a0

20

(83
{MPa)

10

o0 0.1 0.2 03 nd
£ (%)

Fig. 5 Cement compressive stress-strain curve

Table 3 Cement mechanical properties

Test E (GPa) o, (MPa) g, (%)
Compression 12.76 28.12 0.31
Tension 12.28 2.89 0.024

Journal of Applied Mechanics

creasing ovality of the cross sections prevail. This is reflected by
the divergence between strains measured circumferentially at
points spanned by 90 deg. Eventually, the specimen locally col-
lapses in the neighborhood of its weakest point. Local collapse is
followed by a sudden drop in pressure caused by the spread of the
buckle along the entire length of the specimen. The collapsed
cross-section configuration of specimen PIP.M2.G1.102 is shown
in Fig. 8.

104

0 2 4 ¢ 8 10
£ (%)

Fig. 6 Polypropylene tensile stress-strain curve

40
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g
n.g 20
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Fig. 7 Pressure-strain response recorded during the test of
specimen PIP.M2.G1.102
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Fig. 8 Collapsed cross section of specimen PIP.M2.G1.102

The collapse pressures (P,,) of the eight specimens tested are
listed in Table 5, along with their main geometric parameters.
Internal diameter D; and thickness of the annulus (z,) were calcu-
lated from the mean geometric parameters given in Table 1. The
differences between the collapse pressures of specimens with the
same nominal geometry and material can be partially attributed to
slight variations from specimen to specimen in material proper-
ties, diameter, thickness, and initial imperfections (ovality and ec-
centricity). Other imperfections such as lack of adhesion between
layers can also strongly affect the collapse pressure of sandwich
pipes. This will be discussed later together with the results ob-
tained from the numerical analyses.

Numerical Analyses of Sandwich Pipes Under External
Pressure

Numerical Procedures. A numerical model based on the finite
element method was developed within the framework of the soft-
ware package ABAQUS [17] to simulate the behavior of sand-
wich pipes under hydrostatic pressure. Figure 9 illustrates a typi-
cal finite-element mesh used in the analyses. Eight-node,
quadratic, nonlinear plane-strain elements (CPE8) with two
degrees-of-freedom per node (displacements in directions 1 and 2)
were used to model inner and outer pipes, and the annulus region.
This simpler 2-D model with plane strain was assumed to simulate
the uniform collapse of a long tube.

Symmetry conditions reduced the problem to a quarter of a
ring, as shown in Fig. 9. The vast majority of experiments pre-
sented the well-known doubly symmetric mode of collapse, and
that is the reason for this assumption in the numerical model. In
fact, only two experiments ended up precipitating the U-mode of
collapse, which is explained by the small eccentricity between

Table 5 Specimen geometric parameters and experimental
collapse pressures

D P

~

t,

~

Specimen (mm) (mm) (mm) (mm) (MPa)
PIPM1.G1.I01 4591 1.62 11.29 1.62 43.35
PIPM1.G1.102 47.10 1.63 11.13 1.65 34.09
PIPM1.G2.101 47.40 1.68 4.23 1.47 10.98
PIPM1.G2.102 47.37 1.67 4.30 1.47 12.11
PIPM2.G1.102 46.28 1.68 11.26 1.62 37.64
PIPM2.G1.103 46.52 1.62 11.10 1.61 31.14
PIPM2.G2.101 46.54 1.70 4.62 1.46 20.31
PIPM2.G2.102 46.65 1.69 4.69 1.49 17.13
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Fig. 9 Typical finite element mesh used in the correlation
analyses

inner and outer pipes in these particular experiments.

Inner and outer tubes were discretized with ten elements in the
hoop direction and one element through the thickness. Two to four
elements were used to model the annulus region through the thick-
ness depending on the geometry considered. The mesh density
used was verified through a mesh sensitivity analysis in a similar
work [18].

Finally, two layer interface conditions were simulated
numerically—perfect adhesion and no adhesion between tubes
and the annulus material. In the former case, annulus and tube
meshes shared the same nodes along the interfaces. Lack of adhe-
sion was simulated through a surface-based contact model be-
tween layers. The models allow for finite sliding between master
and slave contacting surfaces, respectively tubes and annulus
material.

Tubes were assumed to be J,-flow, finite deforming, elastic-
plastic solids with isotropic hardening. The cement was modeled
in the plastic regime by a simplified associative flow rule with
isotropic hardening. The yield surface, which is a function of the
hydrostatic stress and the Mises equivalent stress at the integration
points, is calibrated using the uniaxial stress-strain curves. The
following failure ratios and parameters were adopted [17]:

* ratio between biaxial and uniaxial ultimate stresses=1.16;

* ratio between maximum plastic strains under biaxial and
uniaxial compression=1.28;

e ratio between ultimate stresses under uniaxial tension and
compression (absolute value)=0.10;

* Poisson ratio=0.15.

The polypropylene was modeled as a hyperelastic, incompressible
material. The compressive and tensile uniaxial curves determined
experimentally were used to calibrate the potential deformation
energy model (Ogden) available in the ABAQUS library.

Correlation Between Numerical and Experimental Results.
The numerical model was first employed to reproduce each of the
physical experiments described in the previous section. The aver-
age geometric and material parameters of the individual speci-
mens were used in the analyses considering both tied and untied
material layers (i.e., perfect adhesion and no adhesion between
tubes and annulus material). The measured maximum initial oval-
ity (A,) of the outer tube was reproduced via radial displacements
(w,) in relation to the perfect cylindrical surface as follows:
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Table 6 Correlation between experimental and numerical
results

Pco (MPa) Pco (MPa)
perfect no Pco (MPa)
Specimen adhesion adhesion experiment
PIPM1.G1.101 46.23 37.97 43.35
PIPM1.G1.102 44.78 38.05 34.09
PIPM1.G2.101 24.70 8.11 10.98
PIPM1.G2.102 25.74 10.03 12.11
PIPM2.G1.102 39.56 12.84 37.64
PIP.M2.G1.103 38.27 12.52 31.14
PIPM2.G2.101 20.84 6.32 20.31
PIPM2.G2.102 2242 6.89 17.13
A,D
w,=— ; cos 26 3)

where D is the outside diameter of the sandwich pipe and 6 is the
polar coordinate of a given node (0< #<90 deg). The calculated

collapse pressures (136,,) are given in Table 6 along with the cor-
respondent experimental values (P.,).

The results show that, except for specimen PIP.M1.G1.102, the
experimental collapse pressures fell in between the calculated val-
ues considering perfect adhesion and no adhesion between layers.
Actually, these two values can be expected to be the upper and
lower estimates for a given material and geometric configuration.
In general, the predictions assuming perfect adhesion between
layers compared quite well with the experimental results for most
of the studied configurations (e.g., nearly 5% average difference
for specimens PIP.M1.G1.101, PIPM2.G1.102, PIP.M2.G2.101).
Experimental collapse pressure of specimens PIP.M1.G1.102,
PIPM1.G2.101, and PIP.M1.G2.102 were closer to the lower col-
lapse pressure estimate (i.e., no adhesion assumption). A poor ad-
hesion between the cement annulus and the pipes may have oc-
curred after curing, which was not noticed before testing. This
was not observed for the polypropylene specimens, in which the
use of an epoxy resin promoted a good adhesion between layers.

It is also interesting to note the differences between lower and
upper estimates, especially for both polypropylene specimens and
for cement specimens with #,=4.25 mm. In these cases, the lack
of adhesion between layers had a significant detrimental effect in
the performance of the sandwich pipe, with a decrease of nearly
65% in the estimated collapse pressure. On the other hand, this
effect was minor for specimens PIPM1.G1.I01 and
PIP.M1.G1.102, probably because of the higher relative rigidity of
the cement layer as compared to the overall sandwich pipe.

Parametric Study. A comprehensive parametric study on the
collapse pressure of full-scale sandwich pipes with different ge-
ometries, materials, and initial imperfections was accomplished
by Netto et al. [18]. It has been concluded that

* For both polypropylene and cement as annulus material, an

approximately linear variation of }A’w with increasing 7, was
observed.

e Expectedly, because cement has a greater initial tangent
modulus than polypropylene, the collapse pressure of a ce-
ment sandwich pipe is always greater than the one for a
correspondent geometry with polypropylene. In addition,
the collapse pressure for cement sandwich pipes presents a
steeper growing rate when ¢, is increased.

e Asitoccurs with single pipes, the collapse pressure of sand-
wich pipes is rather affected by geometric imperfections in
the form of ovality of the cross sections.

* Lack of adhesion between layers can significantly decrease
the maximum pressure capacity of sandwich pipes. Further-
more, the influence of the initial ovality on the collapse
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Fig. 10 Three-dimensional finite element mesh

pressure is amplified when there is lack of adhesion between
layers, mainly for cement sandwich pipes.

As a continuation of the research work performed by Netto et al.
[18], this paper will focus on the structural behavior of sandwich
pipes under combined external pressure and bending, and their
comparative performance with steel pipes. These results are
shown next.

Numerical Analyses of Sandwich Pipes Under Com-
bined External Pressure and Bending

Numerical Procedures. The problem consists of a long, circu-
lar, sandwich pipe under combined bending and external pressure
loads. The pipe geometry (including initial imperfection in the
form of ovality, eq. (3)), curvature K, and the deformation of its
cross sections are assumed to be uniform along the length. It is
also assumed that plane sections perpendicular to the pipe mid-
surface remain plane during loading. The coordinate system used
to define the problem geometry is shown in Fig. 10. Symmetry
about planes /-2 and 2-3 are also assumed. These hypotheses
allow the problem to be reduced to the analysis of a half-ring of
unit length. In addition, for simplicity the layers were considered
perfectly adhered to each other.

Again, the numerical model developed operates within the
framework of the nonlinear FE code ABAQUS [17]. A typical
mesh used in the analyses is shown in Fig. 10. The layers were
discretized with three-dimensional, 27-node, quadratic brick ele-
ments (C3D27 for steel pipes and cement annulus and its hybrid
version C3D27H for polypropylene annulus). In the circumferen-
tial direction, the 180 deg sector was discretized with 12 elements
with equal angular spans of 15 deg each. Four elements were used
through the thickness (one for inner and outer pipes and two for
the annulus region). Although this mesh may seem coarser than
that used for the correlation with experiments, the goal here is just
to provide data to compare the performance of sandwich pipes and
single wall pipes.

The loading history is simulated by applying external pressure
followed by longitudinal bending until collapse (P— K), i.e., past
the maximum bending moment. External pressure is first pre-
scribed through surface pressure load increments on the external
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Fig. 11 Ring with unit length under longitudinal bending

face of the outer pipe. Bending is then applied with the aid of a
reference node at x;=1; x,=x3=0 which is coupled with the edge
nodes on plane 2-3 at x;=1. This kinematic coupling constraint
makes the set of edge nodes to follow the rigid body motion of the
reference node, as shown in Fig. 11. Therefore, bending load is
applied by setting increments of rotation about the axis 3 at the
reference node.

The failure load reported is associated with a limit-load type of
instability in all cases considered. In fact, thin pipes under pure
bending or combined bending and low pressure can experience
bifurcation and wrinkle prior to attaining the limit load [5]. Pas-
qualino et al. [19] present results from a parametric study using
similar geometries and materials and a 3-D finite element model
which is able to capture both types of instabilities. The type of
loading is exactly the same, and, in all cases, limit load was
reached before bifurcation (wrinkling).

For the cement cases, the crack detection under tension is the
main cause of failure in the pure bending and low pressure-
bending analyses. This happens before failure due to crushing can
occur, basically because of the cement different behaviors under
tension and compression (maximum stresses in tension are about
10% of the compressive value).

Parametric Study. Sandwich pipe geometries considered for
the parametric study are shown in Table 7. The internal diameter
of the inner pipe (D;) was fixed equal to 152.4 mm while ;, 7,, and
t, were varied as indicated in the table. Thicknesses f; and 7, were
assumed identical for simplicity and an initial out-of-roundness of
1% was considered. As it will be seen later, these geometric pa-
rameters were selected so that the collapse pressure (P,,) of each
sandwich pipe filled with polypropylene was at least 1.75 times
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Table 7 Geometric properties of the sandwich pipes

Case D; (mm) t;, t, (mm) t, (mm)
1 152.4 3.175 6.35
2 152.4 4.7625 19.05
3 152.4 6.350 31.75

the hydrostatic pressure corresponding to water depths of 1000,
2000, and 3000 m, respectively. The same geometric parameters
were then used for the cement-filled sandwich pipes.

The steel tubes were assumed to have Young modulus equal to
206.82 GPa and Poisson ratio equal to 0.3. Figure 12 shows the
true stress-strain curve (nominal API X-60 grade steel) used in the
numerical model.

Considering that the mechanical properties of the filled materi-
als are dependent on both chemical composition and manufactur-
ing process, simplified representative stress-strain curves were
adopted for the numerical analyses. The uniaxial compressive
stress-strain curve of the cement was fitted by three line segments
where the first one represents the elastic regime with elastic
modulus equal to 12.41 GPa. Therefore, the plastic regime is rep-
resented by the three points shown in Table 8 (& is the engineer-
ing plastic strain).

The uniaxial tensile curve proposed by Sathe et al. [20] for the
polypropylene (Fig. 13) was used to calibrate the potential defor-
mation energy model (Ogden).

The collapses pressures of the three geometries with either
polypropylene (PP) or cement (CMT) are presented in Table 9.
The collapse pressures of the cement-filled sandwich pipes are, on
average, 1.6 times the values obtained for respective geometries
with polypropylene.

Pressure-curvature collapse envelopes for the analyzed sand-
wich pipes are shown in Figs. 14 and 15. Each envelope is de-
scribed by six points, corresponding to constant pressures of 0%,
20%, 40%, 60%, 80%, and 100% of the corresponding collapse
pressure (P,,).

For both materials, it can be verified that the differences among
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Fig. 12 True stress versus logarithmic plastic strain of the API

steel grade X-60

Table 8 Points of the compressive stress-strain curve of the
cement in the plastic regime

o (MPa) gl
20.00 0
34.30 0.0022
34.41 0.0100
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Fig. 13 Polypropylene nominal stress-strain curve [11]

collapse curvatures (K,,) for the three geometries considered are
gradually reduced when the applied external pressure decreases.
For instance, the collapse curvatures under pure bending for case
3 are smaller than those calculated for case 2, in spite of the lower
rigidity of the cross section in case 2. This can be explained as
follows: the increase of the external diameter from case 1 to case
3 (177.80, 209.55, and 241.30 mm, respectively) also increases
the strains of the outer pipe for the same applied curvature. This
leads to a premature collapse of the thickest sandwich pipe due to
excessive yielding of the outer fibers.

When cracking is defined to occur at material points in tension,
the model neglects any stress in the direction of the crack. For
cement-filled sandwich pipes, the detection of cracks generates

Table 9 Collapse pressures of the sandwich pipes

Case Annulus P, (MPa)
1 PP 18.75
CMT 28.77
2 PP 36.83
CMT 57.01
3 PP 52.25
CMT 84.99
60 T T -
Material: X-60/PP/X-60
DeTszamm
0 ® t=1te=635mm
ta= 3L.75 mm
A t= o= 4.7625 mm
1 | ta= 19.05 mm 1
1 ® ti=fe= 3.175 mm
E ts= 6.35 mm
g pf -
o
0} ]
0F .
0 1 1
0.00 040 0.80 120 1.60
K (1/m)

Fig. 14 Pressure-curvature ultimate strength for sandwich
pipes filled with polypropylene
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Material: X-60/CMT/X-6(]
Di= 1524 mm
m ti=te= 6.35 mm J
ty=31.75 mm
a ti=te= 47625 mm
tz=19.05 mm J
# ti=te= 3.175 mm
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Fig. 15 Pressure-curvature ultimate strength for sandwich
pipes filled with cement

numerical instabilities and is basically dependent on the mesh
adopted. The dashed lines in Fig. 15 were obtained from extrapo-
lation of the results of the analyses under combined loading.

Comparision Between Sandwich Pipes and Steel Single
Wall Pipes

The structural performance of the sandwich pipe cases (Table 7)
was compared with that of single-wall steel pipes (API grade
X-60), with the same internal diameter, initial ovality (1%), and
equivalent collapse pressures (2% estimated using the FEM), in
order to assess the feasibility of sandwich pipes for ultra deepwa-
ter applications. The geometric parameters of the single-wall pipes
such as internal diameter D;, external diameter D, and wall thick-
ness (1) are presented in Table 10.

Ultimate strength curves for both sandwich and single-wall
pipes, with similar collapse pressure, are showed in Figs. 16-21.
The results are normalized by the collapse pressure (P,,) and the
curvature parameter (K,=t/D?) of the single-wall pipe.

The results suggest that the structural performance of the sand-
wich pipe is superior to the corresponding single-wall pipe. Under
the same external pressure level, the geometries considered for the
polypropylene-filled sandwich pipes presented higher collapse
curvatures than those for equivalent single wall pipes. The col-
lapse curvature for cases 1 and 2 with polypropylene is, on aver-
age, twice the value calculated for the equivalent single wall pipe,
as can be seen in Figs. 16 and 17. This behavior is not observed
for case 3 (Fig. 18), where the thickness of the annulus is five
times the metallic walls. The contribution of the filler to the
strength of the sandwich pipe seems to decrease as the ratio be-
tween 7, and t;=t, increases too much.

Table 10 Single-wall steel pipes with collapse pressure
equivalent to respective sandwich pipes

Sandwich pipe Single-wall pipe

Case Annulus D; (mm) t (mm) D/t
1 PP 152.4 6.985 23.8
CMT 152.4 8.890 19.1

2 PP 152.4 10.287 16.8
CMT 152.4 13.843 13.0

3 PP 152.4 13.208 13.5
CMT 152.4 18.796 10.1
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Fig. 16 Pressure-curvature ultimate strength for both sand-
wich (polypropylene) and single-wall pipes—case 1

Except for case 3, where the extrapolated result estimated for
K., in pure bending is lower than that presented for the equivalent
single wall pipe (Fig. 21), an extra strength was presented for
cement-filled sandwich pipes (Figs. 19 and 20). Nevertheless, ul-
timate curvatures under combined loading for case 3 were be-
tween 22% (P=0.2P,,) and 292% (P=0.8P,,) higher than those
for equivalent single-wall pipes. Again, as observed for pure
bending in Figs. 19-21, the structural benefits of the filler de-
creases with the relative increase of the thickness z,.

Finally, the two concepts (sandwich and single-wall pipes) are
compared through the steel weight (P;), total weight (P,,), and
submerged weight (P,,;) per unit length in order to provide in-
sight for the evaluation of material and manufacturing costs, as
well as the feasibility of transportation and installation. Table 11
summarizes these results, where the following densities (p) were
used to estimate the structural weight: pge=7850, ppp=910,
peyr=1724, and pyue,=1025 Kg/m?3,

As can be observed from Table 11, there is a significant reduc-
tion in the steel weight for cement-filled sandwich pipes in rela-
tion to single-wall pipes, 25% on average. Polypropylene-filled

12
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Fig. 17 Pressure-curvature ultimate strength for both sand-
wich (polypropylene) and single-wall pipes—case 2
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Fig. 18 Pressure-curvature ultimate strength for both sand-
wich (polypropylene) and single-wall pipes—case 3

sandwich pipes presented almost the same steel weight as equiva-
lent single-wall pipes (cases 1 and 2) and a slightly higher value,
about 14%, for case 3. Moreover, in spite of having a superior
overall weight in relation to the single-wall pipes, the submerged
weight of sandwich pipes is usually smaller. It should be noted,
however, that the core material of sandwich pipes works as a
thermal insulation layer which is normally manufactured over the
external surface of the single wall pipes, not being considered in
Table 11. This layer depends on the scenario of application and
cannot be estimated here.

Concluding Remarks

Sandwich pipes like the ones proposed here aim to fulfill con-
comitantly structural and thermal design requirements. Therefore,
the core material must be selected in order to provide both thermal
insulation and, combined with the internal and external pipes, suf-
ficient strength against either burst or collapse of the system under
installation and working loads. Certainly, many different combi-
nations of materials (pipes and annulus) and geometries (z;, 7,, and
t,) may have similar structural and insulation performance. Mate-

1.2 L] L} L]
» Sandwich Pipe 4 Single Wall Pipe
P60 X-60
1.04 O=152.4 mm D= 152.4 mm
t=t=3175mm t=889mm ]
tz=6.35mm Poo= 28.83 MPa
08} Ke= 030657 1/m
£ o5}
04
ot i
0-0 1 L L
0.0 10 20 30 4C
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Fig. 19 Pressure-curvature ultimate strength for both sand-
wich (cement) and single-wall pipes—case 1
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Fig. 20 Pressure-curvature ultimate strength for both sand-
wich (cement) and single-wall pipes—case 2

rial availability, weight, thermal and mechanical properties, manu-
facturing process, installation method, and other cost-related vari-
ables are important parameters to be considered in the design
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Fig. 21 Pressure-curvature ultimate strength for both sand-

wich (cement) and single-wall pipes—case 3

Table 11

process. Because of the wide range of choices, the design of such
pipes shall be tailored based on the specific requirements of each
subsea production system.

Eight small-scale sandwich pipes, filled either with cement or
polypropylene, have been tested under external pressure up to the
collapse. The experimental results have been correlated with those
from numerical analyses assuming both material and geometric
nonlinearities. Except for one model, the experimental collapse
pressure is within the numerical results obtained for full adhesion
and lack of adhesion between metal pipes and annulus material.
Special care should be exercise during the manufacturing process
in order to ensure appropriate adhesion between layers, therefore
increasing the sandwich pipe collapse pressure.

A numerical procedure for the structural analysis of sandwich
pipes under combined loading of external pressure and longitudi-
nal bending has been employed, based on the finite element
method, with the aim of evaluating the feasibility of such struc-
tures for ultra deepwater applications. The proposed numerical
model generated ultimate strength curves for three different geom-
etries of sandwich pipes with two different filling materials, poly-
propylene and cement.

The structural performance under combined loading of six full-
scale configurations of sandwich pipes was compared with that for
steel single wall pipes, with the same internal diameter, initial
ovality, and collapse pressure. The numerical results showed that
the structural performance of sandwich pipes is superior to the
corresponding single-wall pipes. Under the same constant external
pressure, the polypropylene-filled sandwich pipes presented
higher collapse curvatures than the equivalent single-wall pipes.
Similar results were in general obtained for the cement-filled
sandwich pipes. The submerged weight for sandwich pipes, infe-
rior in most of the analyzed cases, and the reduction (cement) or
equivalence (polypropylene) in weight of steel, when compared to
the corresponding single-wall pipes, are parameters that contribute
to evaluate positively the application of this alternative concept
for ultra deepwater applications.

Although the results of pure pressure indicate that poor bonding
can result in a significant reduction of the collapse pressure,
shrinking the pressure-bending envelope, structural adhesive may
be studied to guarantee perfect bonding. Additional full-scale pro-
totype tests are recommended to confirm the efficiency of the
proposed sandwich pipes for a particular offshore scenario.
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Nomenclature
D; = inner diameter
D = outer diameter
D.x = maximum diameter at the cross section
D, = minimum diameter at the cross section

Comparison between the structural weight of sandwich and single-wall pipes

Sandwich pipes

Single-wall pipes

Ps Pmt Psub t Pw Pmt Pmb
Case Annulus (kg/m) (kg/m) (kg/m) (mm) (kg/m) (kg/m)
1 PP 25.85 28.84 3.41 6.985 27.50 5.18
CMT 31.53 6.09 8.890 35.36 12.04
2 PP 42.50 52.37 17.01 10.29 41.27 17.19
CMT 61.18 25.83 13.84 56.75 30.64
3 PP 61.64 79.51 32.65 13.21 53.93 28.20
CMT 95.50 48.63 18.80 79.35 50.29
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E = material Young’s modulus
K = applied curvature
K, = curvature parameter (¢/D?)
K., = collapse curvature
= applied pressure
P., = collapse pressure
P, = steel weight
Py, = submersed pipe weight
P, = total weight
w, = radial geometric imperfection
t = wall thickness
t, = annulus thickness
t; = inner pipe thickness
t, = outer pipe thickness
max = Mmaximum thickness at the cross section
Imin = minimum thickness at the cross section
Greek
A, = initial ovality
E, = thickness eccentricity
gP = plastic strain
g, = ultimate strain
pcuyr = cement density
ppp = polypropylene density
Pseel = polypropylene density
Pwater = Water density
o = compressive stress
o, = ultimate stress
o, = ultimate stress
6 = polar coordinate
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1 Introduction

Batdorf and Crose [1] combined the statistical analysis of fail-
ure for brittle materials by Weibull [2] with an appropriate fracture
criterion based on fracture mechanics theory and extended this
notion to multiaxial stress states. If an appropriate form of crack
distribution is chosen, the cumulative failure probability function
proposed by Batdorf and Crose [1] reduces to the Weibull distri-
bution for uniaxial tensile stress states. In this work, we will show
that the approximation of an infinitesimally small volumetric ele-
ment may have been prematurely employed by Batdorf and Crose
[1] in obtaining failure probability for an arbitrary volumetric el-
ement AV. The widely used failure probability formula based on
this approximation may present some errors under certain condi-
tions. We will derive an alternative formula without the use of this
unnecessary approximation.

2 Theoretical Derivation

Batdorf and Crose [1] introduced the solid angle () containing
the normals to all orientations for which the component of the
applied stress normal to the crack plane is larger than the critical
stress, i.e., 0, > 0. The solid angle () varies from zero to 41 for
cracks contained inside a three-dimensional body, and it varies
from zero to 27 for surface cracks based on the definition.

In general, a problem of crack propagation can only be one of
the following two cases: (i) (/47 <1, propagation of a crack
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depends on its orientation and there exists a range of orientation
angle where a crack does not propagate and (ii) ()/47=1, propa-
gation of a crack is independent of its orientation.

2.1 Case (I): Q/4m7<1. If there is only one crack and its
crack plane is randomly orientated, the probability of failure
caused by this single crack [Eq. (1) in Batdorf and Crose [1]] is
given by

Pi=QZ,0,)/4m, (1)

where %, is the applied stress, and o, is the critical stress of the
crack.

If the crack density is N, NAV represents the number of cracks
inside the volumetric element AV. Therefore, the overall survival
probability P; is the multiplication of the survival probability of
each crack.

Py=[1-Q3,0.)/4m"Y. ®)

The overall failure probability of this volumetric element is given
by

Pr=1-[1-QE,0)A4m". (3)
In Batdorf and Crose [1], the failure probability is given by

Py= (NAV)(Q/4m). )

If we let an arbitrary volumetric element AV approach zero,
then NAV becomes small. In this case, by neglecting the higher
order terms in the Taylor expansion, Eq. (3) can be reduced to Eq.
(4). However, this approximation is premature and unnecessary.
The theoretical derivation of failure probability prediction formula
by Batdorf and Crose [1] is based on Eq. (4). In this work, we will
derive the failure probability for the total volume V based on Eq.
(3) instead of Eq. (4).

As in Batdorf and Crose [1], we will introduce the crack density
function N(o,,) representing the number of cracks per unit volume
with their critical stress less than or equal to 0. The survival
probability of this volumetric element AV for any possible cracks
under stress %, P(AV,3), is the product of survival probability
for every specific size crack with its critical stress in the range
between q’lc\fm and o'g/rlax, where the values of the minimum critical
stress o™ and the maximum critical stress oh* are determined
by the actual stress status 3 and the fracture criterion.

M M
pavy) =[] r@aven =111

m=1 m=1
- Q(z,0{.1)/4W]AV“’N("Z:)/‘]‘T@A%;, (5)

where the critical stress range is divided into M equal increments
Ao, and the critical stress in the m-th increment is denoted by
on. By applying logarithmic operation to Eq. (5), letting Ao,
approach zero, and reorganizing the resulting equations, we obtain
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o dN(a,,)

P,(AV,3) =exp AVf In[1-Q(X,0.,)/4]
Min Ocr

Ter

do

cr

(6)

Therefore, the failure probability for the total volume V is given

by
Ug/rlax
P}(V):l—exp f fM‘ In[1
V Ucrln

- Q(E,O'C,)/47T]Cﬂvd(—o-”)d0'C,dV , (7)

cr

where a superscript I is introduced to indicate that this equation is
suitable for calculating the failure probability caused by the cracks
whose propagation is dependent on orientation, i.e., Case (I):
/47 <1. Only in the special cases where {)/47r is very small,
i.e., /4w <1, can Eq. (7) be reduced to the equation obtained by
Batdorf and Crose [1] (Eq. (11) in Batdorf and Crose [1]) by
approximating In[1-Q/47] by —Q /4.

2.2 Case (II): Q/4ar=1. In this case, propagation of a crack
is independent of its orientation and it is solely determined by the
size of the crack. Therefore, the failure probability is the probabil-
ity of finding at least one sufficiently large crack. If a sufficiently
large single crack is contained inside a total volume V, the failure
probability for an arbitrary volumetric element AV is given by
AV/V. The survival probability for AV is then (1-AV/V). There-
fore, for a total volume V with K number of sufficient large
cracks, the survival probability for the volumetric element AV is

P(AV)=[1-AV/V]K, (8)

As in Case (I), we again introduce the crack density function
N(o,). The survival probability of AV for all cracks with size
equal to or larger than the minimum critical size (with the maxi-
mum critical stress a‘é‘;’) corresponding to a stress state 2 is the
product of survival probability for each specific size crack as in
Case (I).

M M
pAv3) =[] P(av,om =[] [1 - Aviv]/aNED/docdon
m=1 m=1
=[1- AV/‘/]EZ:IVdN(of;)/da'crAacr' ©)

Total volume V is divided into n number of volumetric ele-
ments and oﬁ‘ff and 3/, respectively, denote the maximum critical
stress and the stress level in the i-th volumetric element AV'. If we
let Ao, approach zero in the i-th volumetric element AV/, we
obtain

Mi
PAV.S) =[1 - AV /V]Vf(fcr V(o )ldordo, (10)

Furthermore, we assume that the total volume V is equally di-
vided. This leads to the overall survival probability in the entire
volume V given by

n
. n i rTM[
PY(V) — H PT(AVI) — [1 —AVIV V/AVE[-ZIAVfO“ dN(Ucr)/dUcrdUcr'
i=1
(11)
As the number of volumetric elements n approaches infinity,
AV/V approaches zero. In this case [3],

lim [1-AV/V]YA =l
AVIV—0

(12)

Therefore, the failure probability for the total volume V, Pf( V), is
given by
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PJ‘}(V)=1—exp<—f f% Mdo-crdv)’ (13)
vJo dog

where a superscript Il is introduced to indicate that this equation is
suitable for calculating the failure probability caused by the cracks
whose propagation is not dependent on orientation, i.e., Case (II):
O/4m=1.

In Summary, the probability of failure caused by all types of
cracks PAV) is given by

PAV)=1~(1-Pp(1-P)). (14)

3 Examples

3.1 Example 1: Failure Probability Predictions for Uni-
form Stress States. We will examine the effect of differences in
the above formulations on the failure probability predictions
caused only by surface cracks given the same crack density pa-
rameters by using three simple stress states. Since only surface
cracks are considered, )/27r is used instead of {)/47r, and surface
integral instead of volumetric integral will be used in the above
formulations. In order to evaluate the above equations and visual-
ize the differences, we assume the following form of the crack
density function N(o,) as in Chao and Shetty [4]

N(o) = ko (15)
where k and m, respectively, are scale and shape parameters. Here,
we choose them as m=4.917 and k=4.95
X 107" mm~ MPa=*°!7. These numerical values are reasonable
in representing glass surfaces sanded by 600 grit S;C sand papers.
In addition, we consider the case where the stress status is uni-
form, and the specimen surface area is A=1 mm?.

To determine (), a fracture criterion is required. Here, we as-
sume that a crack propagates when the stress normal to the crack
surface o, reaches its critical value o, i.e.,

(16)

In the following examples, o; and o, are the two principal
stresses on the specimen surface.

Example I1A. 0,=0,=0

Since the normal stress in any direction is o (or o), if the
critical stress o, for a crack is less than oy, i.e., 0 <o <0, the
crack will propagate regardless of its orientation, i.e., 1/27=1.
Equation (13) is used by replacing the volume integral with the
area integral. If o> o for a crack, the crack will not propagate
regardless of its orientation. The formulation by Batdorf and
Crose [1] becomes identical to Eq. (13) obtained in this work.

Example IB. 0;>0,=0

If the critical stress o, for a crack is between zero and oy, i.e.,
0= o0 = 0, the stress normal to the crack plane is always larger
than the critical stress, i.e., 0,> 0, regardless of its direction.
This again leads to 2/27=1, and Eq. (13) is used with the sub-
stituted area integral. If the critical stress o, for a crack is be-
tween o, and oy, i.e., 0, <0, =<0, the crack propagation is in-
fluenced by the crack orientation, and the critical range of angle ()
needs to be calculated from the fracture criterion Eq. (16). Under
this condition, we have

0, = 0.

2(Tcr—0'|—0'2> (17)

=0

Q:Zcos"(

Since /27 <1, Eq. (7) with the substituted area integral is used.
The overall failure probability given by Eq. (14) leads to
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7 dN(a,) i
Pr=1-exp| -A ——do,+A In[1
: do.
0 cr oy
dN(o.,)
- QRal—do,, |. (18)
d cr

Correspondingly, the overall failure probability based on Batdorf
and Crose [1] can be obtained as follows:

QdN(
P.=1-exp| -A
0

dN(ow) ,
27 dog, A

Example I1C. 0;=0> 0,

In this case, the critical stress o, is between 0 and o, and the
crack propagation depends on the crack orientation. The range of
critical angle () can be calculated from Eq. (17). For this case, any
crack propagation depends on its orientation, i.e., Q/27<1.
Therefore, Eq. (7) is employed with the substituted area integral.

In order to graphically present some results, we choose o and
o, as follows.

For Example 1A, oy=0,=

For Example 1B, o1=0, 0,=0/3

For Example 1C, oy=0, 0,=—0/3

Based on Eq. (15) and the above assumptions, the failure prob-
ability as a function of o is calculated for both formulations as
shown in Fig. 1.

(19)

o (6>0)

3.2 Example 2: Crack Density Parameter Determination
Based on Biaxial Flexure Tests. Crack density parameters are
often determined by curve fitting of data from failure strength
experiments. We will examine the effect of differences in the
above formulations on the resulting statistical parameters deter-
mined from a set of experimental data. For this purpose, biaxial
flexure tests were conducted using borosilicate glass specimens.
The 1 mm thick glass disks with 15.9 mm diameter were sup-
ported at the edge by a ring of bearings and loaded on the top
center through a tungsten carbide (WC) spherical ball indenter
with a diameter of 10 mm. The surfaces of the glass disks were
sanded on a rotating wheel with 600 grit SiC sandpaper under
water coolant. The experiments were carried out on the Universal
Testing Machine (Instron Model 4020, Canton, Mass.) at a cross-
head speed of 0.01 mm/min. A total of 34 specimens were used to
obtain the experimental failure probability distribution. The frac-
ture initiation load P was recorded for each specimen and the
cumulative probability of crack initiation was obtained.

The crack density function N(o,) is assumed to be in the form
of Eq. (15). By using this equation in the formulation by Batdorf
and Crose [1] or Eq. (14) obtained in this work, we can derive the

failure probability function Py as follows:
Py=1-exp(-eP"), (20)

where

Journal of Applied Mechanics

o Experimental Data
Best-fitting Line

o/

Fig. 2 Biaxial flexure test data

_ ln[ a2mkID:|
(771‘2)'” .

For the formulation based on Batdorf and Crose [1], I, in Eq. (21)
is given by

1 O'I/P/’ZT[ o m—1 r o p
LI T e
rla=0 Y o/ PIm=0 Pl a) \Plmt a

(22)

In(P)

o

In(-In{1-Pf)
KN

&
Il

-4

21)

For the formulation obtained in this work, I, is given by

! ( r) r > tTZ/P/ﬂ't2 o m—1 o
I,= 2 —d| - cr d cr
’ J;/a—o "\a (a f 2 (P/ﬂ'lz) <P/7Tl‘2)

o /Plmt=0
~ fo']/l’/ﬂ'ﬁ 1n<] ~ &)( oo )m—ld( oo )i|
2 2] |
Ol Pli=0yl Pl 2m )\ Plmt Plmt
(23)
where a is the radius of the support ring, ¢ is the thickness of the
specimen, and () is the critical angle as defined before.

By taking logarithmic operation twice on Eq. (20) and best
fitting the experimental data points with a straight line as in Fig. 2,
we determine that the parameters m and B are 4.917 and -20.60,
respectively. We can also obtain the crack density parameter k

from Eq. (21). The determined crack density parameters m and k
based on the two distinct formulations are summarized in Table 1.

4 Discussions

In Example 1A, there is no difference in terms of actual formu-
lations between the work based on Batdorf and Crose [1] and the
present work as shown in Fig. 1. In Examples 1B and 1C, the
results shown in Fig. 1 reflect the differences caused by the two
formulations. While these are not dramatic differences, the failure
probability of the proposed formulation is higher than that of the
formulation by Batdorf and Crose [1] given the same stress level
and therefore it provides a more conservative estimate.

In Example 1B, if o, falls between o, and o, the two formu-
lations are significantly different as in Egs. (18) and (19). When
the value of o, approaches that of o, the value of /27 ap-
proaches zero [see Eq. (17)]. In this case, In(1-/27) in Eq. (18)
can be approximated by —Q)/27 in Eq. (19) by ignoring the higher
order terms of the Taylor expansion. Because of this, the contri-
bution to the overall failure probability by cracks with critical

Table 1 Crack density parameters determined by biaxial flex-
ure tests

m k [mm~2MPa~*°17]
Batdorf and Crose Formulation 4917 4.95x 101!
Proposed Formulation 4917 3.99x 107!
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stress close to o is very similar between the two formulations.
When the value of o, is larger than o but not close to o, how-
ever, In(1-CQ/2m) cannot be approximated by —{/2m since
Q /2 is not small. As in Eq. (15), the number of cracks increases
rapidly as critical stress o, increases, indicating that the number
of small cracks is much larger than the number of large cracks.
Therefore, the crack density function, serving as a weight function
in Egs. (18) and (19), favors the small cracks which give a range
of small /2. In other words, the numerical difference between
the two formulations in Example 1B can be attributed to the fail-
ure probability primarily due to cracks with critical stress larger
than o, but not close to o.

Similarly in Example 1C, there are significant differences be-
tween In(1-Q/2) and —Q/27 when the critical stress is larger
than zero but not close to o;. However, the number of cracks
corresponding to this range of critical stress is relatively small.
Therefore, the contribution to the overall failure probability by
such cracks is relatively small. On the contrary, when the critical
stress is close to o, In(1-Q/2) can be approximated by
—/2. The number of cracks corresponding to this range of
critical stress is relatively large. Therefore, the contribution to the
overall failure probability of such cracks is large, and the numeri-
cal differences between the two formulations remain small. By
adding these small differences in two regions of critical stress, the
numerical difference between the two formulations in Example
1C remains relatively small.

We have discussed the reason that there are not significant nu-
merical differences between the two formulations in the results of
Example 1 while the failure probability prediction formulas are

612 / Vol. 72, JULY 2005

significantly different. It is important to note that we chose a spe-
cific form of crack density function N expressed in Eq. (15).
Given a more general form of crack density function, the numeri-
cal results based on these two formulations may be different.

In Example 2, the values of k are different for the two formu-
lations while the values of m are the same. The difference is 24%
using the result based on the proposed formulation as the baseline.
This difference may lead to possible errors in failure probability
prediction.

While the formulation by Batdorf and Crose [1] has been suc-
cessfully used for many practical applications, the formulation is
based on Eq. (4) where the premature assumption infinitesimally
small volume element is implicitly employed. In order to improve
accuracy of failure probability prediction, it is best to employ Eq.
(14).
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1 Introduction

The study of the tallest standing column is basic in the design
of tall structures, especially antennae. Greenhill [1] first found the
maximum height of the uniform column that does not buckle un-
der its own weight. The height can be extended if the column
tapers towards the top. The optimum shape of the tallest nonuni-
form column is more difficult to determine. Keller and Niordson
[2], and Cox and McCarthy [3] discussed its asymptotic proper-
ties, and Hu and Kirmser [4] integrated the shape numerically. It
was found that the optimum column shrinks very fast at the base,
then more slowly, and becomes very sharp at the apex.

However, such an optimal column is very difficult to manufac-
ture due to the vastly nonuniform radius variations. A more prac-
tical solution is to weld two uniform rods of different radii to-
gether. The purpose of the present paper is to find the optimum
dimensions (lengths and diameters) of a compound column such
that for a given total weight, the maximum height can be attained.

2 Formulation

We assume the column is composed of two segments, each with
uniform density (weight per length) and uniform flexural rigidity
(Fig. 1). Let the subscript 1 denote the top segment of length
(1-a)L, and the subscript 2 denote the bottom segment of length
alL. For small deflections, a moment balance on an elemental
length for the top segment gives

dm+ py(L—5")60,ds" =0. (1)
The moment is proportional to the curvature
do
m=ElL,— 2
ds

where s’ is the arc length from the base, 6 is the local angle of
inclination, and p, EI are the weight per length and the flexural
rigidity, respectively. Equations (1) and (2) give
d*6
d—22+32(1 ~5)6,=0. 3)
s

Here s=s'/L is the normalized distance and B8,= p,L3/EIL, is a
nondimensional weight parameter. The general solution to Eq. (3)
is in terms of Bessel functions

0, =As'J(s) + Bs'J_(s) 4)
where t=1/3, A and B are constants and
2 3/2 pll2
§=§(1—S) By (5)
For the bottom segment a similar moment balance yields
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d*e
K;+Bl[k(l—a)+a—s]0,=0 (6)

where 8, =p,L*/EI, and N\=p,/p, is the density ratio. The gen-
eral solution to Eq. (6) is

0,= Cﬂtft( 7]) + Dﬂtf-t( 7/) (7)

where C and D are constants and

2
=31 =) +a-sB", (8)
The boundary conditions are that the top is free
—(1)=0 9
Is (1) )
the base is fixed
6,(0)=0 (10)
and the angles and moments match at the joint
6,(a) = 6,(a) (11)
dé deé
El,—(a) = EL—2(a). (12)
ds ds

For nontrivial solutions, after some work, Egs. (9)-(12) give the
characteristic equation

YN (72) = I (9 (1) KsalJ1-(S0) = T-12(S0)]
=260 (s )} + TSN Bl (10) = Tt (1)) + T (1)
X 122) = Ti-d(1)) + 2400 ()T () = T ()T () ]}
=0 (13)
where y=EI,/EI, and

m= 77‘5:1’ Mo = 77‘5=u’ Sa= g|s=a' (14)

For given a, y, N\ and since B;=vyB,/\, Eq. (13) can be solved

numerically for the lowest value of 8,, which can represent the
buckling weight.

3 Optimum Shape

Consider the important case of the two-segment solid column
made of the same elastic material (E=Young’s modulus,o
=density) and a similar circular cross section (radii r; and r,
<ry). Thus

y=N2=(r/r)*. (15)

Actually Eq. (15) is satisfied by a variety of other similar cross-
sectional shapes. For each N and a Eq. (13) is solved by a root
finder algorithm yielding the buckling parameter 3, in Table 1.
When a=0 or A=1 the compound column is equivalent to a single
uniform column. The value for the buckling parameter is 7.837 35
(see, e.g., [5]). On the other hand, if a=1 the buckling parameter
is 7.837 35/\. The total volume of the column is

V' = alm-r% +(1 - a)Lﬂ'r%. (16)
The normalized volume is
\%4 1 a
Ve——p—=—(1l-a+_|. (17)
4mol’IE B, A

For given a,\ we obtain 3, from Table 1 and the value of V from
Eq. (17). The dimensions of the tallest two- segment column for a
given amount of weight or volume is equivalent to that which
minimizes the volume for given height. Thus we search for the
minimum V in Table 2. After some refinement, we find minimum
V is 0.038 41 occurring at a=0.661 and A=0.131. For given
height L that needs to be reached, the optimum dimensions are
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Fig. 1 The two-segment column
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(18)

and the lengths of the two segments are 0.661L and 0.339L, re-
spectively. Notice that the radial dimensions depend on the mate-
rial properties of the column.

The present analysis can be extended to two-segment columns
with different material properties or to multisegment columns.
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Table 1 Buckling parameter g,=p,L%/El,
Na 0.1 0.3 0.5 0.7 0.9
0.1 10.72 22.55 60.67 183.6 103.7
0.3 10.43 20.28 43.44 48.40 32.28
0.5 9.898 16.42 24.43 23.45 18.16
0.7 9.160 12.34 14.51 13.99 12.20
0.9 8.293 9.096 9.448 9.332 8.954
Table 2 The total volume V

Na 0.1 0.3 0.5 0.7 0.9
0.1 0.177 0.164 0.0907 0.0398 0.0877
0.3 0.118 0.0838 0.0499 0.0544 0.0960
0.5 0.111 0.0792 0.0614 0.0725 0.105
0.7 0.114 0.0915 0.0837 0.0929 0.114
0.9 0.122 0.114 0.112 0.116 0.123
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Although Peng Yafei and his co-workers discovered some faults
with the pseudo-stress function method suggested by Y. S. Lee in
1987, the authors did not provide convincing arguments. We in-
vestigate the crucial assumption in Lee’s method by rewriting it as
the form of real part and imaginary part. Through a specific coun-
terexample, we point out that the crucial assumption in Lee’s
theory is untenable. Namely, for given Airy’s stress function, it
cannot be guaranteed that the pseudo-stress function A(x,y) ex-
ists. The root cause of the fault with Lee’s method is found in this
paper. [DOL: 10.1115/1.1935526]

1 Introduction

In 1987, Y. S. Lee and his co-workers [1-4] came up with an
analytic method that is known as the pseudo-stress function
method. The pseudo-stress function method is similar to the Airy
stress function method in linear elasticity and has been used to
analyze the stress field of power-hardening materials. However,
this method was challenged by Peng Yafei and his co-workers in
1996 [5]. In Peng’s paper, the authors declared that they had found
some crucial problems in Lee’s theory and presented some discus-

sion. But the authors did not explain why Lee’s method was
wrong and failed to point out the major cause that is responsible
for the fault with Lee’s theory. In order to show the fallacy in
Lee’s theory, a more convincing reasoning process is needed.

In the present paper, efforts are paid to find the radical fault in
Lee’s theory. Through a specific counterexample, we prove that
the basic assumption used in Lee’s theory cannot always hold
true. Namely, for given Airy’s stress function U and constant n
(n#0), it cannot be guaranteed that the pseudo-stress function
exists.

2 Discussion

We can see that Lee’s theory is completely based on the fol-
lowing assumption [1],

A PU
o (1)
PA_ U
02T aR
where
2= &Z_UIQZ_U (2)
a2’
] —
n=—2 3)
m

Then, Lee obtained the compatibility equation in terms of the
pseudo-stress function A as follows:

A
P
However, Eq. (4) cannot hold true because there is a serious
problem in Lee’s assumption Egs. (1). The following discussion in
this section will show that the pseudo-stress function A(x,y) does
not always exist for given Airy’s stress function U and constant n
(n#0). This problem is fatal to the whole theory.
For given Airy’s stress function U and n, we suppose A(x,y)
=P(x,y)+iQ(x,y). Rewriting Egs. (1), we have

)

1j#P &#P _&#Q | &P [#O #Q 1 (FU #U _ FU
- —2——2+2—+l—2—+ 5 =— —2——2—21—
4 ox= oy daxdy axdy ox ay 47\ ox dy dxdy )
1J#P &P _&Q | FP [(FQ &Q 1 (U FU _FU\
N T2 T3~ — +i| 22—+ N aay =- —2——2+21
4 ox=  dy ox dxdy ox dy 47\ ox ay axdy
[
Considering Airy’s stress function U is a real function, from Eq. >FP PP F0 (&ZU &ZU)
. . . —_—— ) = n —-  —
(2) we know " is also a real function and has the following form: P (9y2 axdy o2 0)}2 .
_ &P (Fo FO\ _ .. FU
o+ - | = 22—
oxdy ox dy dxdy
L L1 (Fu Fu\ [ FUN (T
“=lel\ae o) e/ ] - ©
Thus,
Consequently, from Egs. (5), we obtain
P _2r_g(70_20)
gy = ol oy’
P . . (®)
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF (92 P " (92 U
MECHANICAL ENGINEERs for publication in the ASME JOURNAL OF APPLIED MECHANICS. P f
Manuscript received by the ASME Applied Mechanics Division, May 31, 2004; final ﬁX&y &x&y

revision, October 26, 2004. Associate Editor: H. Gao.

Journal of Applied Mechanics

Copyright © 2005 by ASME

JULY 2005, Vol. 72 | 615



&Y

axdy
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Equations (8) and (9) are the differential equations that the real
part and imaginary part of A(x,y) should satisfy respectively.
From Egs. (9) one obtains

0(x,y) =A(x*+y?) + Bx+ Cy + D, (10)

where A,B,C,D are constants.

However, when n# 0, Egs. (8) usually have no solutions. We
consider the case of n=2 and U=xy’. Substituting n=2 and U
=xy? into Egs. (8), we obtain

#P PP 1, 5

TS T o= X —2xy

ox dy 2 (11)
&P 2 3
—— ==xy+2y
axdy 2

It is not difficult for us to know that Egs. (11) have no solutions at
all. Therefore, the existence of A(x,y) is not ensured, at least in
the case of n=2, U=xy>. Generally speaking, Egs. (8) do not have
solutions since a single function P(x,y) is required to satisfy two
distinct differential equations.

616 / Vol. 72, JULY 2005

3 Conclusion

From what have been discussed above, we find, for given Airy’s
stress function U and constant n (n# 0), it cannot be guaranteed
that the function A(x,y) exists, which is required to satisfy Egs.
(1). So, we can safely draw our conclusion that Lee’s assumption
is unwarranted and the pseudo-stress function method suggested
by Lee collapses.
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Inaccuracy in the Detection of
Molecules Using Two Microcantilever-
Based Methods

Cheng Luo

Biomedical Engineering and Institute for
Micromanufacturing, Louisiana Tech University,
911 Hergot Avenue, Ruston, LA 71272

e-mail: chengluo@latech.edu

Based on mass-loading effect on a microcantilever, there are two
approaches for sensing the presence of molecules: dynamic and
static methods. In this paper, we demonstrate that the two methods
actually use the same form of relationships for their sensing pur-
poses and, if the designed adhesion region of a cantilever is only
partially occupied by molecules, then neither method can be ap-
plied to accurately determine the number of molecules
adsorbed. [DOI: 10.1115/1.1938201]

1 Introduction

The microcantilever-based dynamic method uses resonant fre-
quency changes due to mass loading. This method has been ap-
plied to detect vapor adsorption [1], the amount of uniformly
coated material [2], the number of Escherichia coli cells bound
[3], the mass of an Escherichia coli cell [4], etc. In this work,
using the general relationship derived for the method, we demon-
strate that, when the designed adhesion region of a cantilever is
not fully occupied by molecules, this method cannot be applied to
accurately determine the number of molecules adsorbed, which is
different from what was claimed in previous studies [3,4]. We also
discuss the possibility of determining the number of molecules
adsorbed according to the relationship between the static bending
of a cantilever and the mass loading.

2 Dynamic Method

Suppose that n molecules of the same type are adsorbed on a
rectangular cantilever. Our assumptions for the dynamic method
are as follows: (i) the length, width, and thickness of the cantile-
ver are much larger than the size of a molecule; (ii) the molecules
have identical sizes; (iii) the damping effect is negligible; and (iv)
after adsorption of molecules, the higher natural frequencies of the
mass-loaded cantilever are much larger than the fundamental
natural frequency. Set up a coordinate system at the top surface of
the cantilever (Fig. 1), and the x-axis coincides with the middle
line of the top surface. Only translational vibration in the x-z plane
is considered. Then, according to Dunkerley’s equation [5], we
have

1 1
(Zﬂf)z_(277f )2=a1m1+azm2+ o tam, (1)
y 0
where m; (i=1,2,-++,n) is the mass of the ith molecule and, f

and f are the fundamental natural frequencies of the cantilever
before and after mass (molecule) loading, respectively. Both f and
fo can be measured by experiments [1-4]. The expression of fj, is

(6]
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EI
f0=0.5594/ — (2)
mol

where my is the mass of the cantilever, £ Young’s modulus, and /
moment of inertia. It can be observed from Eq. (1) that f is always
less than f;. Since f,—f (the frequency change) is monotonously
increasing with 1/(27f)>=1/(27f,)*> and the value of f,—f has
one-to-one correspondence with that of 1/(2af)>—1/(2mf,)>,
then 1/(2mf)%>—1/(2mf,)* can be considered a generalized fre-
quency change. According to Eq. (1), it is more straightforward to
use 1/(2mf)>=1/(27f,)?, instead of fy—f, to consider the fre-
quency shift caused by the adsorption of molecules. Therefore, in
this paper, 1/(27f)>—1/(27f,)? is used to represent the frequency
change. In Eq. (1), g; is the so-called influence coefficient of the
ith molecule and is defined as the vertical deflection of the canti-
lever at the position of the ith molecule due to a unit force at the
same point (Fig. 1). The expression of q; is given by [7]
Xi

Y3k )
where x; is the x coordinate of the position occupied by the ith
molecule. The relationship (1) can also be rewritten in the inte-
gration form as

Qmn? - @af? ), 3E7Y “

where A is the surface area occupied by the monolayer of ad-
sorbed molecules. In Eq. (4), p is a constant representing the areal
mass density of molecules in A and depends on the mass and size
of the molecule. Using Eq. (1) or (4), the mass of a single mol-
ecule and the number of molecule layers adsorbed can be deter-
mined as shown below.

i. Determination of the mass of a single molecule. When only
one molecule is adsorbed on the cantilever, the relationship (1)
becomes

3EI[ 1 1 } )
" Lem? T eaf)?

where x is the x coordinate of the position occupied by the mol-
ecule. After f is measured experimentally and x is found, m can
be determined using Eq. (5). This idea was used in [4] to deter-
mine the mass of an Escherichia coli cell of 6.65X 10713 g with
the assistance of a silicon-nitride microcantilever. In order to de-
tect the mass of a much lighter particle, it is expected that further
miniaturization of a cantilever from micro- to nanoscale is needed
because nanocantilevers have much higher sensitivity in detecting
molecules [8,9].

According to the size of the particle, its position x, can be
found using a microscope of the comparative resolution. For ex-
ample, for a microparticle the commonly used optical microscope
of a resolution of 1 um can be employed to find its location on the
cantilever, whereas for a nanoparticle the LEO Transmission Elec-
tron Microscope of a resolution of 0.2 nm [10] is a good tool for
the purpose of observation.

ii. Determination of the number of molecule layers adsorbed. In
the case the top surface is fully occupied by k (k=1,2,...) lay-
er(s) of molecules, according to the relationship (4), we have

k_lZEI[ 1 1 ] .
ol | @ Qnfo? ©

where [ is the cantilever length and 7 the cantilever width. The
mass of the molecule can be obtained, for instance, by the ap-
proach of case i, and the size of the molecule is normally available
in a physical or chemical manual. After these two are known, p
can be calculated accordingly. After f is further measured experi-
mentally, k can be determined using Eq. (6). This equation can
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Fig. 1 Cross-sectional view of a cantilever and the geometric
meaning of the influence coefficient a; in the dynamic method

also be used to determine the amount of material uniformly ad-
sorbed or coated on the whole top surface [1,2].

In the above two cases, when the position of a single particle is
known or the top surface of the cantilever is fully occupied by
molecules, the mass of a single particle or the number of molecule
layers can be found using Eq. (1) or (4). On the other hand, in
case p is known beforehand and the designed adhesion region on
top surface of the cantilever is only partially occupied by a mono-
layer of the molecules, the number of molecules adsorbed cannot
be accurately determined using the relationship (1) or (4). The
determination of the number of molecules adsorbed in this case is
equivalent to finding the surface area occupied by the molecules
since the number of molecules adsorbed equals the division of the
occupied surface area by the cross-sectional area of a single mol-
ecule. According to the relationship (4), this occupied surface area
cannot be accurately found. Consequently, the amount of mol-
ecules adsorbed cannot be accurately determined. The inaccuracy
in determination of the occupied surface area is because
1/(2mf)*>=1/(2mf,)? does not have a one-to-one correspondence
with this occupied area since x/3EI is involved in Eq. (4). For
example, according to Eq. (4), eight molecules adsorbed at the
positions, which have the same x coordinate x; (x;<1/2) but dif-
ferent y coordinates, generate the same frequency change as a
single molecule adsorbed at the location whose x coordinate is
2x,. However, the area occupied by the eight molecules is eight
times that covered by the single molecule. Another example of
addressing this inaccuracy in detection is as follows. We claim
that given a fully occupied region (), in which 0<c=<x<d</,
—(t/2)<y<1t/2, and ¢<d, we can always find a fully occupied
region W, in which 0<e<x<h</ and —(¢+/2)<y=<1/2, such
that ¥ and () have different areas but are corresponding to the
same frequency change. For this claim to hold, e and % need to
meet the following criteria:

dt=ct=nt-¢ (7a)

d—-c#h-e (7b)

where use is made of Eq. (4). According to Eq. (7a), we have

h=Vd*—c*+ e (8)

For every chosen e, which satisfies 0 =< e <c¢, we obtain a unique &
from Eq. (8). After we substitute d—c=h—e into Eq. (7a), it can
be readily shown that Eq. (7a) does not hold. Consequently, Eq.
(7b) must hold. Therefore, it is concluded that our claim is true.
Since e can vary in [0,c), there actually exist numerous V.

The above two examples indicate that due to the integrand
x3/3EI in Eq. (4) different occupied areas may lead to the same
frequency change and, subsequently, that the number of molecules
adsorbed cannot be accurately found using Eq. (4). Our results are
different from what was claimed in [3,4], which stated that the
frequency change is proportional to the number of the molecules
adsorbed.
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Fig. 2 Relationship between the generalized frequency
change and the normalized x coordinate of a molecule

According to Eq. (3), x3/3EI represents how much a molecule
affects the frequency change when the molecule is located at dif-
ferent positions on the cantilever. In order to see this effect clearly,
let us rewrite Eq. (5) as

F.=X3 9)

where F,=[1/2mf)>~1/(2mfy)*]3El/ml* and X=x/I. F, can be
considered as another generalized frequency change. X is the nor-
malized x coordinate of a molecule and ranges from O to 1. Figure
2 shows the relationship between F,. and X and illustrates how the
molecule position affects the frequency change. It can be observed
from this figure that the closer the molecule is located to the open
end of the cantilever, the bigger the frequency change is. This
implies that in order to have a single-molecule sensitivity in de-
tection of the number of molecules adsorbed, the designed adhe-
sion places should be away from the fixed end such that frequency
change induced by the absorption of an additional molecule is
high enough to be detected. The area under the curve in Fig. 2
represents this generalized frequency change due to the loading of
a monolayer of molecules that occupy the whole top surface of the
cantilever.

3 Static Method

In Sec. 2, we demonstrated that the dynamic method cannot be
used to find the number of molecules adsorbed according to the
mass-loading-induced frequency change. Naturally a question
arises: can we detect the number of molecules adsorbed in view of
the mass-loading-induced static bending? In this section, we dis-
cuss the possibility. The coordinate system of Sec. 2 is adopted in
this section, and unless otherwise noted, the symbols used in both
sections have the same meanings. Assume that the mass loading
predominates the bending of the cantilever. Then, because of the
absorption of a particle, we have [7]

mgx}
w=
6E1

where w denotes the vertical deflection of the open end of the
cantilever and can be measured using an optical laser [11-14]. In
Eq. (10), £, is the x coordinate of the position occupied by the
molecule and g represents the gravitational acceleration (Fig. 3).
Sophisticated optical lasers can be used to measure the bending of
a cantilever with high accuracy. For instance, the vertical cavity
surface-emitting laser used in [14] was stated in the same paper to
have an accuracy of 0.1 nm. The silicon cantilever used in [14] is
1 pm thick, 100 um wide, and 500 um long. If the same laser
and silicon cantilever as those of [14] are adopted in measure-
ment, Young’s modulus of silicon is chosen to be 150 GPa [15],
and the molecule is located at the open end of the cantilever, then

(31-%) (10)
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Fig. 3 Cross-sectional view of a cantilever and the bending
configuration under the mass loading of a molecule in the
static method

according to Eq. (10) the minimum detectable mass is 3.06
X 10713 g. In order to measure the mass of a lighter molecule
using the same laser, it can be observed from Eq. (10) that another
cantilever with a smaller Young’s modulus and/or smaller geomet-
ric dimensions (i.e., width and height) should be chosen for de-
tection.

When a monolayer of molecules are adsorbed onto the cantile-
ver, in view of Eq. (10) and the principle of superposition prin-
ciple [16], we obtain

2(31 -
sz PGl (an
A

6E]

If w and [gx’(3/-x)]/6EI in Eq. (11) are interpreted as
1/Q2af)?=1/(2mf,y)? and x3/3EI, respectively, then Eq. (11) ac-
tually has the same form as Eq. (4). As a result, we expect that the
static method can perform the same functions as the dynamic
method, such as the detection of the mass of a single particle,
while the same limitations faced by the dynamic methods in the
detection of the number of molecules adsorbed also apply to the
static method. Using Eq. (11) and following the same procedures
in Sec. 2, which are based on Eq. (4), it can be readily shown that
this expectation is true.

Finally, it should be noted that, in order to make the static
method valid for detecting the presence of molecules based on the
relationship between the static bending of the free end of a canti-
lever and the mass loading, the mass loading must predominate
the bending. As a result, the Eq. (11)-based static method is not
applicable to cases where the surface stress generated because of
the absorption of molecules affects the bending more than the
mass loading [10-13]. In those cases, the dynamic method should
be chosen to detect the presence of molecules since this method is
not affected by the surface stress, in principle.

4 Summary

In this work, we demonstrate that both dynamic and static
methods use the same form of relationships for their sensing pur-

Journal of Applied Mechanics

poses. We also show that when the designed adhesion region is
only partially occupied by molecules of interest neither method
can be applied to accurately determine the amount of molecules
adsorbed on a cantilever, although it is possible to use both meth-
ods to find the mass of a single particle and the amount of uni-
formly coated materials.
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The buckling mode localization of a multiply supported column
subjected to fully reversed, displacement-controlled cyclic loading
is studied numerically. The results show that localization can take
place and lead to limit loads similar to those reported in other
structural members in the literature. Analysis of the results reveals
the mechanisms by which localization takes place.

[DOL: 10.1115/1.1938203]

Introduction

It is well known that metal structural members, such as open-
section beams and tubes, can collapse when subjected to persistent
cyclic loading into the plastic range of the material [1-6]. These
references illustrate that structural integrity degrades with cycling
due to the accumulation of deflections. For some relatively long
structural members, deflections are consistent with buckling
modes that display periodic variation along the length [4,5]. Un-
der persistent loading, localization of such buckling modes can
take place and induce collapse. Under load control the deflections
are unconstrained, and localization can take place in a manner that
is reminiscent of monotonic loading. The events that lead to lo-
calization under displacement-controlled cycles of constant ampli-
tude are less obvious because the global prescribed deflections of
the structure are constrained, and one may think that this would
impair localization and result in shakedown. Yet, several examples
in the literature indicate that localization can set in and result in
collapse.

In this note an attempt is made to illustrate how localization can
develop under displacement-controlled cyclic loading as in [4,5]
by using a simple model of a multiply supported column similar
to that considered by Goto et al. [7]. They used this model to
demonstrate that localization can take place under displacement-
controlled cyclic loading. Here, the model will be used to illus-
trate how localization develops.

Formulation

The problem consists of a pinned-pinned elastic-plastic column
with several intermediate pin supports as shown in Fig. 1(a). The
spacing between the supports is N. All but the left-most support
allow axial deflections. The total length of the column is L, and it
has a rectangular cross section of width b and height /4. The col-
umn carries an axial load P (positive in tension) at the right end.
The intermediate supports of the column are modeled as elastic
springs, as shown in Fig. 1(b). The stiffness of the springs k is set
to be relatively high, as in the penalty approach. The coordinate
system is also shown in the figure, with x and z being the axial and
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transverse coordinates, respectively. The respective displacement
components are # and w. The column is loaded by prescribing the
axial deflection of the right end u".

Kinematics. The kinematics are based on the common assump-
tion that plane sections, originally perpendicular to the axis of the
column, remain plane and perpendicular to the deformed axis. An
intermediate class of kinematics [8], which allows moderate rota-
tions but requires small strains, is adopted. The axial strain is
given by

e=g’+ Kz (1)
where
e"=u’+%w’2 (2)
is the membrane strain and
k=—w" (3)
is the curvature.

Constitutive Model. Since we expect progressive deformation
with cyclic loading, the constitutive model adopted needs to
model ratcheting in a reasonable manner. The two-surface,
Dafalias-Popov cyclic plasticity model [9,10] has proven success-
ful in this respect (see [11]), and is adopted here. This model is
based on classical incremental plasticity with kinematic harden-
ing.

Principle of Virtual Work. Equilibrium is satisfied using the
Principle of Virtual Work (PVW). It can be written as

L hl2 S
bf J o de dzdx — 2 kw;ow;,—€5g=0 4)
0 J-nn

i=1

where w; is the transverse deflection at the ith support, S is the
number of intermediate supports and

g=[u(l)-u"JEA=0 (5)

is a constraint used to prescribe the axial deflection u”. EA is the
elastic axial rigidity of the column. The Lagrange multiplier €
=P/EA yields the axial load in the column.

Solution. An approximate solution is attempted by discretizing
the displacement components u and w using trigonometric series
expansions that satisfy the boundary conditions

NY
. nmx
w= 2, a,5iIn—
n=1 L
(6)
N.\
nimx
u=byx+ >, bysin=—
n=1

Substituting (6) into the kinematics (1)—(3) and into the PVW
(4) yields a system of 2N,+2 nonlinear algebraic equations with
unknowns {a,...,ay .b,,by,...,by ,€}. The equations are solved
iteratively for each prescribed increment in u” using the Newton-
Raphson method. The integrations in (4) are carried out using
Gaussian quadrature.

Results

In order to illustrate localization, columns with several seg-
ments must be considered. A column with no internal supports
(A=L) does not display localization [12], and its response under
cyclic loading is very similar to that predicted by a simple
Shanley-type model [13]. Localization events become easier to
see as the number of segments increases. A column with eight
segments (A=L/8) has been chosen to illustrate the development
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Fig. 1 (a) Schematic of the parameters of the problem and (b)

model of the problem

of localization. The slenderness ratio of each segment is N/r=30,
where r is the radius of gyration of the cross section. The plastic
buckling load P, and corresponding axial displacement at x
=L,u,,, of this column can be found using a simple plastic bifur-
cation analysis. In the example to be shown, the column starts
with a periodic geometric imperfection in the transverse direction
with wavelength N and amplitude w,/A=0.033%. In order to ex-
cite localization, the left-most segment has a slightly larger imper-
fection amplitude wj,+w,,, where w;,/w,=0.1. The material param-
eters used were obtained from experimental data in [11] and are
given in Table 1. The results shown below were generated with
N,=24. Five and sixty integration points were used through the
height and length of the column, respectively.

The column is loaded by prescribing the displacement u”. A
symmetric cycle with amplitude ii/|uy|=0.975 has been used.
Loading has been carried out for 90 cycles. The load-deflection
response of the column is shown in Fig. 2(a) with P plotted posi-
tive when in tension. P has been normalized by |P,|. It is clear
that the peak compressive loads decrease rapidly over the first five
cycles, as the amplitude of the transverse deflections grows, as
shown in Fig. 2(b). In this figure, w, is the lateral deflection of the
column at the peak compressive load, plotted in increments of 10
cycles. The initial imperfection is also shown, but it is almost
indistinguishable from the horizontal axis. It is clear that the trans-
verse deflections of the column have increased significantly by the
tenth cycle, but are uniform along the length. After that point, the
transverse deflections continue to grow and the compressive load
peaks continue to decrease, but at a much slower rate. The deflec-
tion amplitude in the biased segment grows at a slightly faster
rate. This continues until approximately cycle 30 when the seg-
ments near the right end begin to experience a decrease in trans-
verse amplitude. By cycle 75, the localization of transverse de-
flections becomes significant enough to cause the decrease in peak
compressive loads to accelerate. In fact, limit loads appear within
each cycle starting with the 78th cycle. By the 90th cycle, it is
clear that the deformation is heavily localized at the left end of the
column.

Now that the localization behavior of the column has been es-
tablished, it is of interest to investigate how it takes place. It has
already been shown that the amplitude of the transverse deflection
in segments on the right part of the column decreases with local-
ization and provides at least part of the length necessary to feed
the localization process. This is illustrated in Fig. 3, where the
axial deflections at the supports at the peak compressive displace-
ment u, are plotted versus the number of cycles N. The displace-

L/r=240 p 1
ML = 0.125 2]
wol A = 0.033%

w, Jw,=0.1 T
u/l u,| = 0.975

Wp 0.05
iy
Cycles 60
20 PR
o6 O
(b) 05 o2 04 - (xtuw)/L

Fig. 2 (a) Axial load-deflection response and (b) column de-
flection as function of number of cycles

ment at point / is the prescribed quantity and is shown in dashed
line. The increase in the deflection at point a is a direct result of
the localization process and is expected, but note that the magni-
tude of the deflection of points b—g eventually becomes larger
than that of point /. Considering point g, for example, the fact that
it has an axial deflection larger than point /2 can be accounted for
by an increase in length of the segment between these two points.
The change in length of a segment between the nth and (n+1)th
supports can be calculated from

(n+1)N
A)\zj NA+u)+w'? = Ddx (7)
n\

Figure 4 shows the length change of several segments in solid
lines and the change in length of the column in dashed line. It is
clear that segments close to the right end of the column increase in
length, whereas the segment where localization occurs decreases
in length, and that the overall length of the column increases
somewhat as well.

In summary, the localization process is a global event in the
column, where the amplitude of the lateral deflections away from
the localization zone decreases as the peak compressive load de-
creases and the length of the same segments increases. These
events provide the necessary kinematic events to make localiza-
tion possible. In this model localization occurs in a very smooth

Table 1 Material properties (see [11] for parameter definitions)
E, GPa EP GPa o,, MPa o, MPa a, GPa B m
(ksi) (k31) “(ksi) (ksi) (ksi)
181 1.38 131 269 490 27 2
(26,320) (200) (19) (39) (71,100)
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manner. Other column models demonstrate much more severe
changes in the load-deflection response at localization. The model
in [12] of a column on an elastic-plastic foundation is one such
example.
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This paper introduces a non-time-based control scheme for active
position and vibration control of two-degree-of-freedom systems
by applying it to the path-tracking and swing control of a system
composed of a trolley and a simple pendulum. The basic idea
behind such a scheme is to make the path reference of the trolley
a function of the time and of a time delay. This latter, which is
affected by the measured oscillation, is calculated on-the-fly in
order to reduce the swing phenomenon. The effectiveness of the
proposed control scheme, which may have application to the con-
trol of overhead cranes, is proved experimentally.

[DOL: 10.1115/1.1940663]

1 Introduction

There exists a considerable number of industrial applications
demanding for innovative controllers guaranteeing, at the same
time, accurate tracking of planned positions and effective damping
of undesired vibrations. This paper proposes an innovative “non-
time-based” control strategy fitting this new and challenging task,
and which is suitable for path tracking and active vibration sup-
pression on the mechanical systems that can be modeled as two-
mass systems. In order to validate experimentally the proposed
strategy, it is applied to the control of a “crane-like” system with
a single resonant mode, modeled through a concentrated mass and
a simple pendulum.

The simultaneous tracking control and swing suppression in
overhead cranes is an interesting control task since point-to-point
operations lead to significant control problems due to their
pendulum-like dynamic behavior. In the last decades many solu-
tions have been proposed for the control of crane-like systems (the
contributions from [1-5], and the references therein, are represen-
tative of the research conducted to date). Some of them have led
to industrial applications and commercial diffusion (e.g., [3]).
Nevertheless, researchers keep working in this field so as to re-
duce maneuver time and residual vibrations in rest-to-rest opera-
tions (e.g., [4,5]).

This paper proposes a novel non-time-based strategy: the refer-
ence path is made a function of a parameter depending on the time
and on another variable which is related to the measured vibration
(i.e., the swing angle), and can be thought of as a time delay. For
this reason the proposed control is named “delayed reference con-
trol” (DRC).
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Non-time-based control strategies are being employed more
and more widely in a variety of fields, in particular, when follow-
ing a desired path defined only through space (“path tracking”)
becomes the primary goal. In particular, an interesting “event-
based” (non-time-based) control strategy has been recently intro-
duced and applied to several control problems in the robotic field,
such as robot motion control [6], robotic teleoperation [7], force
and impact control [8], and manufacturing automation [9]. Ac-
cording to the event-based method, the reference input is a func-
tion of an action reference parameter instead of a function of time.
The reference input is modified on-the-fly since the action refer-
ence parameter is sensitive to the sensory measurement and the
task. Clearly, the role of the planner in the event-based approach
changes with respect to the classical control theory.

The DRC scheme proposed in this paper openly belongs to the
category of these new non-time-based control approaches. In a
previous work [10] the effectiveness of a DRC scheme was
proven by means of simulation results in the problem of path-
tracking and vibration suppression in a generic two-mass system.
With this work, the DRC scheme is extended to a real application,
and a first experimental validation of the scheme is provided.

2 The System Model

The free-body diagrams of the studied system is shown in Fig.
1. The trolley can move on a horizontal plane driven by the ex-
ternal force F and is connected to a simple pendulum oscillating
on a vertical plane. The nonlinear equations of motion of the
trolley and of the pendulum can be easily inferred by applying
Newton’s law. If friction is neglected, the following equations
hold:

Trolley: (M +m)x(t) + mLé(f)cos 6(t) — mLO(t)%sin 6(¢) = F(z)
(1)

Pendulum: (J + mL?)6(r) + mgL sin 6(t) = — mLi(t)cos 6(7)
(2)

In order to employ the generic relations proposed in [10] for the
synthesis of the DRC, the differential equations above are linear-
ized, under the hypothesis that the pendulum has small motion
about the vertical axis. The following approximations are there-

fore introduced: sin =60, cos =1, *6=0. The linearized equa-
tions take the form
[M+ m mL ] (1) [0 0 ] x| JFQ)
L[ =
mL  J+mL? 0] 0 mgL || 6(r) 0
3)

3 Synthesis of the Delayed Reference Controller

Let us rewrite the second row of Eq. (3) in the form

(J + mL?) 6(t) + mgLO(t) = — mLi(7). (4)

The term on the right-hand side may be thought of as an external
force ¢(r) acting on the pendulum, and whose value can be appro-
priately set by regulating the trolley acceleration. The values taken
by ¢(t) depend on the control problem considered. A very basic
control problem which fits the studied system is keeping the pen-
dulum swing to a minimum while the trolley moves. This is a
regulation problem, in which the reference is set equal to zero.
The following corrective action can therefore be established:

q(t) = = mLi(1) = kep[ 6,(1) = 6(1)] = = kep O(0) ®)
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Fig. 1 Free-body diagrams of the trolley and the pendulum

The corrective action can be straightforwardly related to the ac-
celeration of the trolley position reference (%,) if the servo system
ensuring the motion of the trolley has a very low time constant
with respect to the swing period. In other words, the trolley posi-
tion controller is required to keep the position error x,—x small, so
that x x, can be assumed. Under such a hypothesis Eq. (5) can be
rewritten as follows:

k.p0(1) = mLi(t) = mL5 (1) (6)

Now, assume that x, is not only a function of time, but also of an
additional parameter acting as a time delay, and which can be
modified continuously. It is basically being assumed that the con-
trol problem consists in ensuring that the trolley moves along a
desired path through space (no matter how long it takes), rather
than in accordance with a trajectory in time (as in classical control
theory). Without loss of generality, the path through space the

trolley is desired to follow may be defined by the parametric equa-
tion x,=x,(I), where [ € V is called the action reference parameter.
In the DRC scheme [ is of the form /=¢—7, with 7€ V. The time
varying quantity 7=7(¢) will henceforth be called a time delay,
although it does not necessarily take positive values. 7 has been
introduced to allow modifying the action reference parameter,
and, consequently, the instantaneous position reference x, and its
time derivatives. This ensures the possibility of generating the
control action specified by Eq. (5) without drifting away from the
desired path.

By computing the second derivative of x,.(I) with respect to
time, and by substituting it for ¥.(r) into Eq. (6), one gets the
following equation:

d*x,

dr?

kepl1) = mL[ (1-#0) = %%(z)] )

which can be integrated over time twice yielding:

k frﬂ(é)dé—mLffti(l—f(f))zﬂ
b o o d(&= 1)

Codx,
_mLf fo i) DU ®)

If we write 8=8(1)=(dx,/d)(]), B'=p"(1)=(d’x,/dI*)(I), Eq. (8)
clearly becomes

chf 0(§)d§=mLff B’(l—i’(é))%l(—mLffBﬁ‘(é)dé
0 0 0

©)

By integrating by parts the last term of the right-hand side, there
follows

kep f 6(0)dl=mL f f B'(1-7(0)*df—mL f (ﬁ%(g“)— f B’(l—f(@)f(@d&)d&mL f J ﬁ’(l—%(é“))zdl—mL(Br(t)
0 0 0 0 0

—f ﬂ'(l—f(i))f(é“)dl—Jfﬂ'(l—*(é))*(i)d§>=mL<ff B’(l—*(l))dé—f B’(l—f(i))*(@d{)
0 0 0 0

—mLpB(1) (10)

E. N — ______________..;____E
! B _ kp e '
|7 mil. fis
% (1) g Z
I __ Action Reference Block |

[

F *

x, =x,(f kv sky E
Reference Position p— T -'
Planner Coantrofler Physical System T

Fig. 2 Block scheme of the DRC
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Fig. 3 The experimental apparatus

0.25 T

Table 1 Geometric and inertial characteristics of the prototype

M (kg) 32318
m (kg) 0.7589
J (kg m?) 584 10*
L (m) 0.459

If the parametric equation x,=x,(l) is smooth enough to cause all
the integrals containing its second derivative B’ to be negligible,
Eq. (10) becomes

t
chf 6({)dl=—mLpB(1) (11)
0
Although the assumption under which Eq. (11) holds might ap-
pear too restrictive, in many practical applications (e.g., material
handling by cranes or robots) the second derivative of the path
x,(1) is small. In these applications neglecting the terms containing
B’ does not affect the expected dynamic behavior of the con-
trolled system, as it is shown by the experimental results in Sec. 4.

T T
—— Mumerical
— - - Experimental |

t[s]

& [rad]

— Mumetrical
— - - Exprimental —

-12
0

—— Mumetrical
— - - Exprimental

0 0.5

1.5 2 2.5
t[s]

Fig. 4 Comparison of the experimental and numerical results. Linear reference path. x, 6,

and 7 vs. L.
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Fig. 5 Comparison of the experimental and numerical results. Nonlinear reference path. x,

6 (DRC and PD), and 7 vs. L

As a result, the following relation between the delay 7 and the
pendulum swing is established:

k. r
(1) =-— f 6(0) - dt. (12)
mLB J
Hence, as long as the actual position of the trolley (x) can be
approximated by the path reference (x,), Eq. (12), or its Laplace
transform,

kep
mLBs
allows computing the time 7 the reference has to be delayed to
perform the desired control action given by Eq. (5).
As far as the parameter k. is concerned, its value should be set

so that the pendulum exhibits a critically damped response. The
combination of Egs. (4) and (5) immediately yields

T(s)=—

0(s), (13)

k.p=2\mgL(J +mL?). (14)

Figure 2 shows the block scheme of the DRC designed for the
studied system. It comprises the following blocks:

626 / Vol. 72, JULY 2005

* Reference planner: it computes the instantaneous reference
x, on the basis of the action reference parameter /;

* Action reference block: it computes [ on the basis of 7, the
instantaneous values of B(I) and 6,

* Position controller: a standard proportional-plus-derivative
(PD) regulator is employed to compute the control action
F(I).

The DRC scheme therefore has a cascade structure, which con-
sists of an inner position (x) loop and an outer loop closed to
suppress the pendulum oscillation (6) actively. A major advantage
of the DRC scheme is the possibility of employing any kind of
regulator in the inner feedback loop, which provides a great flex-
ibility in the design of DRC-based regulators. The inner loop
regulator, in fact, does not play any role in the DRC synthesis: its
sole role is to ensure an accurate tracking of x,.

4 DRC Experimental Validation

The theory developed in the foregoing sections has been ap-
plied to the prototype shown in Fig. 3. A pendulum, composed of
a steel load at the end of a slender steel bar with square cross
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section, is connected to the inner block of a ballscrew linear ac-
tuator THK LM KR3306A by means of a horizontal shaft sup-
ported by two ball bearings. The linear actuator is driven by the
brush type dc motor MAE M540-0741. The angular position of
the shaft supporting the pendulum, coinciding with 6, is measured
by the incremental encoder Eltra EH 63G. An identical encoder is
employed to measure the angular position of the motor shaft, and,
consequently, to compute x. Table 1 reports the basic geometric
and inertial characteristics of the physical system.

As far as the tuning of the trolley position controller parameters
is concerned, the following values have been employed: k,=2
X 10°, k;=3 X 10°. The value employed for the DRC gain is k,,
=1.7, which has been computed through Eq. (14). The DRC
scheme has been implemented on a PC with a real-time operating
system, running at a sample rate of 1 kHz.

The experimental analysis has been carried out performing two
significant tests aimed at assessing the DRC performances in
tracking two different paths x,(I), characterized by either a con-
stant or a continuously varying S. In these tests the pendulum
swing is caused by the trolley motion, and in particular by
changes in the direction of motion, while no external disturbances
are added.

Figure 4 shows the results obtained in the first test, in which B
is equal to 0.08 (ms™'). In this case, the desired position x,
against the action reference parameter / is a straight line, and Eq.
(13) holds true without any approximation. The time histories of
the controlled variables x and @ recorded experimentally and com-
puted in simulation prove the effectiveness of the scheme and
show that the real system performs as predicted by the numerical
model: only negligible differences can be discriminated, in par-
ticular, the residual high-frequency oscillation which can be no-
ticed in the € versus ¢ subplot is the first flexural mode of the
pendulum, which is not accounted for in the model. Further evi-
dences of the effectiveness of the control scheme have been gath-
ered carrying out a second test that allows assessing the perfor-
mance of the DRC when a nonlinear path is to be followed. The
reference path x,(/) employed in the test is x,(/) =x, sin(wl), where
x0=0.07 (m) and =027 (rads™!). Hence, the explicit expres-
sion for B(I) is B(l)=xow cos(wl), and contrary to the previous
test, B changes with / and also becomes equal to zero when [
=\7/2w, for any \ € A. However, if B tends to zero, Eq. (12)
goes to infinity and no delay 7 can be computed. This drawback of
the scheme has been overcome by introducing a discontinuity off-
set at zero in B: a coefficient 5 € V* has been defined, so that, if

|B(D)| < 6= B(1):=5-{B(1)/|B(])|}. The value of the coefficient &
employed in this test is 6=0.001 (ms™').

Figure 5 compares the experimental and numerical time histo-
ries of x, 0, and 7. In the subplot showing 6 vs. t, the results
obtained without controlling the pendulum swing (i.e., just em-
ploying the PD regulator of the inner loop) have also been plotted
for comparison. Figure 5 proves that also in this case the DRC
ensures an accurate tracking of the delayed reference x,, even
when B approaches and crosses zero, i.e., when the reversal of the
direction of motion takes place. On the other hand, swing control
is effective along all the path except when [ approaches zero.
Such an expected “path-dependent” decline in the DRC perfor-
mances is caused by the fact that when B approaches zero no
compensation of the oscillatory motion can be realized without
theoretically drifting away from the desired path, and the value of
B employed in the computation of 7 is either kept constant or
changed discontinuously to avoid the aforementioned singularity.
The limited discrepancies between the experimental recordings
and the expected behavior are mostly due to friction in the ball
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bearings supporting the shaft about which the pendulum oscil-
lates. The fact that when the sole PD is employed, the swing of the
real system shows a faster decrease in amplitude supports this
evidence.

5 Conclusions

In this paper a new non-time-based control strategy has been
introduced which is suitable for path tracking and vibration sup-
pression on the mechanical systems that can be modeled as two-
mass systems.

The main novelty of the DRC is the introduction of an action
reference parameter, which is a function of a time delay. A chief
advantage of the scheme is ensuring a correct path tracking over-
coming detrimental time constraints. A further advantage is that it
can be obtained by simply adding an outer loop to a standard
tracking controller, which enlarges the range of applications to
which it can be applied.

The experimental results from the test case of a pendulum-like
mechanism have proved that the DRC performs effectively, both
in terms of vibration suppression and path following accuracy.

The extension of the method to fit systems with more than two
degrees of freedom requires further theoretical insight and will be
the subject of future numerical and experimental developments.

Nomenclature
¢y = mass center of the pendulum

= overall mass of the pendulum

= trolley absolute displacement

= moment of inertia of the pendulum about the

mass center

distance of the mass center from the pendulum

axis of rotation

»R, = horizontal and vertical component of the reac-
tion force between the trolley and the
pendulum

= trolley driving force

overall mass of the trolley

= angle of the pendulum from the vertical

= gravity acceleration.

= 3

~
Il
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Erratum: “Size-Dependent Eshelby’s Tensor for Embedded
Nano-Inclusions Incorporating Surface/Interface Energies”
[Journal of Applied Mechanics, 2004, 71(5), pp. 663—671]

P. Sharma and S. Ganti

Equations (21b) and (21c¢) and (22b) and (22c) in the published paper contain typographical errors. The error in Egs. (21b) and (21¢)
involves a switching of the sign and a factor of 2 while the error in Egs. (22b) and (22c¢) involves a switching of the signs. The corrected
equations are written below.

Spherical Inclusion:

3KMe" - 27,/R, 2R}
Srr(r)__ 3 r>R0 (21b)

4uM 4+ 3KM 4 2K R, | PP

—|r>R,. (21¢)

3KMe" - 27 /R, ] R
,

o
4uM +3KM + 2K%/IR,

egol(r) = 8¢¢(") = [

Cylindrical Inclusion:

3K'"Me" — 7JR R?
onr) == [2MM 3K+ KR ] 2|7 R (226)
o0
3K'"Me" — 7 /R, R:
= — >R . 22
o0ir) [2,# F3KMIKOR, | 2T (22¢)

*N

Further, in the case of the cylindrical problem, an eigenstrain of sj,:szﬁzs and s;=0 was assumed.

We are grateful to Changwen Mi and Professor Demitris Kouris regarding discussion on the aforementioned issues.
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